Analog switch having reduced gate-induced drain leakage
Abstract:
In an example, an apparatus includes an analog switch having an n-type metal oxide semiconductor (NMOS) circuit in parallel with a p-type metal oxide semiconductor (PMOS) circuit between a switch input and a switch output. The analog switch is responsive to an enable signal that determines switch state thereof. The NMOS circuit includes a switch N-channel transistor coupled to a buffer N-channel transistor, a gate of the switch N-channel transistor coupled to the enable signal and a gate of the buffer N-channel transistor coupled to a modulated N-channel gate voltage. The PMOS circuit including a switch P-channel transistor coupled to a buffer P-channel transistor, a gate of the switch P-channel transistor coupled to a complement of the enable signal and a gate of the buffer P-channel transistor coupled to a modulated P-channel gate voltage. A control circuit is coupled to the analog switch to provide the modulated N-channel and modulated P-channel gate voltages each of which alternates between a respective supply voltage and a respective gate induced drain leakage (GIDL) mitigation voltage based on the switch state.
Public/Granted literature
Information query
Patent Agency Ranking
0/0