Set-up and method of electrohydrodynamic jet 3D printing based on resultant effect of electric field and thermal field
Abstract:
The present invention belongs to the field of advanced manufacturing technology and relates to one set-up and method of electrohydrodynamic jet 3D printing based on resultant effect of electric field and thermal field. This method is used to fabricate micro/nano 3D structure, under the resultant effects of electro hydrodynamic force and thermal field. First of all, the ink reaches needle orifice at a constant speed under the resultant effect of fluid field and gravity field. Then a high voltage electric field is applied between needle and substrate. And the ink is dragged to form stable micro/nano scale jet which is far smaller than the needle size using the electric field shear force generated at needle orifice. The solvent evaporation rate of ink increases combined with the radiation of thermal field at the same time. Finally, the micro/nano scale 3D structure is fabricated on substrate with the accumulation of jet layer by layer. Compared with liquid jet printing technology, this method describing in present invention owns many advantages, including wide adaptability of material and manufacturing complex micro/nano scale 3D structures.
Information query
Patent Agency Ranking
0/0