Large-scale artificial neural-network accelerators based on coherent detection and optical data fan-out
Abstract:
Deep learning performance is limited by computing power, which is in turn limited by energy consumption. Optics can make neural networks faster and more efficient, but current schemes suffer from limited connectivity and the large footprint of low-loss nanophotonic devices. Our optical neural network architecture addresses these problems using homodyne detection and optical data fan-out. It is scalable to large networks without sacrificing speed or consuming too much energy. It can perform inference and training and work with both fully connected and convolutional neural-network layers. In our architecture, each neural network layer operates on inputs and weights encoded onto optical pulse amplitudes. A homodyne detector computes the vector product of the inputs and weights. The nonlinear activation function is performed electronically on the output of this linear homodyne detection step. Optical modulators combine the outputs from the nonlinear activation function and encode them onto optical pulses input into the next layer.
Information query
Patent Agency Ranking
0/0