Bayesian Global optimization-based parameter tuning for vehicle motion controllers
摘要:
In one embodiment, a computer-implemented method for optimizing a controller of an autonomous driving vehicle (ADV) includes obtaining several samples, each sample having a set of parameters, iteratively performing, until a predetermined condition is satisfied: determining, for each sample, a score according to a configuration of the controller based on the set of parameters of the sample, applying a machine learning model to the samples and corresponding scores to determine a mean function and a variance function, producing a new sample as a minimum of a function of the mean function and the variance function with respect to an input space of the set of parameters, adding the new sample to the several samples, and outputting the new sample as an optimal sample, where parameters of the optimal sample are utilized to configure the controller to autonomously drive the ADV.
信息查询
0/0