Machine learning-based predictive dynamics for vehicle motion control
Abstract:
A method includes receiving sensed vehicle-state data, actuation-command data, and surface-coefficient data from a plurality of remote vehicles, inputting the sensed vehicle-state data, the actuation-command data, and the surface-coefficient data into a self-supervised recurrent neural network (RNN) to predict vehicle states of a host vehicle in a plurality of driving scenarios, and commanding the host vehicle to move autonomously according to a trajectory determined using the vehicle states predicted using the self-supervised RNN.
Information query
Patent Agency Ranking
0/0