基于相邻像元纠缠调控滤噪的光子计数激光雷达

    公开(公告)号:CN112363177A

    公开(公告)日:2021-02-12

    申请号:CN202011156511.4

    申请日:2020-10-26

    摘要: 一种基于相邻像元纠缠调控滤噪的光子计数激光雷达,属于激光雷达探测技术领域。本发明针对现有光子计数激光雷达由于探测灵敏度高而对噪声的光子敏感,造成探测结果可靠性差的问题。它借鉴量子通信编码的形式,将量子通信的纵向时间编码改为各个相邻像元的横向编码,对完全线偏振光的每个像元进行偏振纠缠调控,通过回波各个像元与调制后的光场的关联性实现信号和噪声的判断,利用相邻像元纠缠特性将信号从强背景噪声中提取出来。本发明通过回波各个像元的调制信息关联性判断信号和噪声,从而滤除噪声,提高了成像质量。

    双量子数OAM光束测量旋转速度和加速度的系统及方法

    公开(公告)号:CN112327324A

    公开(公告)日:2021-02-05

    申请号:CN202011233322.2

    申请日:2020-11-06

    IPC分类号: G01S17/58 G01S17/88 G01S7/481

    摘要: 双量子数OAM光束测量旋转速度和加速度的系统及方法,涉及激光雷达探测领域。本发明是为了解决现有只能测量恒定的旋转速度,不能同时测量旋转速度和旋转加速度的问题。激光器发射出的激光信号依次经过单模光纤调整、双量子数轨道角动量调制模块、光学系统准直发射,最终发射至待测旋转目标,待测旋转目标将携带着横向旋转速度和加速度信息的光反射回光学系统,光学系统将携带着横向旋转速度和加速度信息的光汇聚至分光器,依次经分光器、滤光片、探测器,最终输出一系列周期性信号,时频分析信号处理器对一系列周期性信号进行时频处理,得到一系列中频频率,根据一系列中频频率得到待测旋转目标横向旋转速度和加速度。它用于同时测量速度和加速度。

    基于轨道角动量调制的多维信息探测系统

    公开(公告)号:CN112285730A

    公开(公告)日:2021-01-29

    申请号:CN202011171435.4

    申请日:2020-10-28

    IPC分类号: G01S17/58 G01S17/42

    摘要: 基于轨道角动量调制的多维信息探测系统,涉及激光多维信息探测技术领域;解决了目前多维信息还需要多个探测系统分别探测然后进行合成,比较繁琐复杂的问题。本发明包括信号发生器、激光器、整形模块、空间光调制器、发射光学器、接收光学器、窄带滤光片、探测器、示波器、信号处理器;信号处理器,用于对接收的n个脉冲驱动信号的到达时间以及n个回波电信号的到达时间和强度进行处理,获得目标的距离R、径向速度V和旋转速度Ω。本发明主要用于对有旋转特征的目标进行多维信息探测。

    基于轨道角动量调制的多维信息探测系统

    公开(公告)号:CN112285730B

    公开(公告)日:2023-10-20

    申请号:CN202011171435.4

    申请日:2020-10-28

    IPC分类号: G01S17/58 G01S17/42

    摘要: 基于轨道角动量调制的多维信息探测系统,涉及激光多维信息探测技术领域;解决了目前多维信息还需要多个探测系统分别探测然后进行合成,比较繁琐复杂的问题。本发明包括信号发生器、激光器、整形模块、空间光调制器、发射光学器、接收光学器、窄带滤光片、探测器、示波器、信号处理器;信号处理器,用于对接收的n个脉冲驱动信号的到达时间以及n个回波电信号的到达时间和强度进行处理,获得目标的距离R、速度V和旋转速度Ω。本发明主要用于对有旋转特征的目标进行多维信息探测。

    一种基于遗传算法的激光雷达成像质量探测方法及系统

    公开(公告)号:CN112327327B

    公开(公告)日:2022-08-05

    申请号:CN202011222485.0

    申请日:2020-11-05

    IPC分类号: G01S17/89 G01S7/497

    摘要: 一种基于遗传算法的激光雷达成像质量探测方法及系统,属于激光雷达探测技术领域,本发明为解决自适应光学波前矫正技术应用于长距离激光雷达成像技术中存在的问题。本发明方法为:通过遗传算法迭代演化出全局最优相位调制矩阵,将所述全局最优相位调制矩阵前馈加载至发射端的空间光调制器,对激光器输出光束进行相位调制后再发射;遗传算法以相位调制矩阵作为繁衍对象;遗传算法以能量利用率作为成本函数,遗传算法的成本函数为:通过“选择”、“交叉”、“变异”迭代演化相位屏,反馈到发射端的空间光调制器,从而抵消大气湍流的影响,提高光子计数激光雷达成像质量。

    基于结构光场的三维矢量速度测量系统及测量方法

    公开(公告)号:CN112379388B

    公开(公告)日:2023-10-20

    申请号:CN202011285689.9

    申请日:2020-11-17

    IPC分类号: G01S17/58 G01P3/36

    摘要: 本发明的基于结构光场的三维矢量速度测量系统及测量方法涉及激光多维测速技术领域,目的是为了克服现有技术中对三维矢量速度的测量较为复杂且精度不高,以及实时性较差的问题,系统中的激光器发射出射激光通过空间光调制器进行多阶角动量复合调制生成调制信号,然后再照射待探测的运动目标生成回波信号;接收光学系统调节回波信号后使其穿过单向反射玻璃的背面加载至阵列探测器;且使得本振信号对准回波结构光场中心的径向多普勒效应光斑;阵列探测器探测四个横向多普勒效应光斑区域、以及径向多普勒效应光斑与本振信号的叠加区域,得到对应的每个时刻的总光强;并通过三维矢量速度解算模块根据每个时刻的总光强解算出运动目标的三维矢量速度。

    双量子数OAM光束测量旋转速度和加速度的系统及方法

    公开(公告)号:CN112327324B

    公开(公告)日:2023-09-26

    申请号:CN202011233322.2

    申请日:2020-11-06

    IPC分类号: G01S17/58 G01S17/88 G01S7/481

    摘要: 双量子数OAM光束测量旋转速度和加速度的系统及方法,涉及激光雷达探测领域。本发明是为了解决现有只能测量恒定的旋转速度,不能同时测量旋转速度和旋转加速度的问题。激光器发射出的激光信号依次经过单模光纤调整、双量子数轨道角动量调制模块、光学系统准直发射,最终发射至待测旋转目标,待测旋转目标将携带着横向旋转速度和加速度信息的光反射回光学系统,光学系统将携带着横向旋转速度和加速度信息的光汇聚至分光器,依次经分光器、滤光片、探测器,最终输出一系列周期性信号,时频分析信号处理器对一系列周期性信号进行时频处理,得到一系列中频频率,根据一系列中频频率得到待测旋转目标横向旋转速度和加速度。它用于同时测量速度和加速度。

    基于相邻像元纠缠调控滤噪的光子计数激光雷达

    公开(公告)号:CN112363177B

    公开(公告)日:2022-08-05

    申请号:CN202011156511.4

    申请日:2020-10-26

    摘要: 一种基于相邻像元纠缠调控滤噪的光子计数激光雷达,属于激光雷达探测技术领域。本发明针对现有光子计数激光雷达由于探测灵敏度高而对噪声的光子敏感,造成探测结果可靠性差的问题。它借鉴量子通信编码的形式,将量子通信的纵向时间编码改为各个相邻像元的横向编码,对完全线偏振光的每个像元进行偏振纠缠调控,通过回波各个像元与调制后的光场的关联性实现信号和噪声的判断,利用相邻像元纠缠特性将信号从强背景噪声中提取出来。本发明通过回波各个像元的调制信息关联性判断信号和噪声,从而滤除噪声,提高了成像质量。

    基于结构光场的三维矢量速度测量系统及测量方法

    公开(公告)号:CN112379388A

    公开(公告)日:2021-02-19

    申请号:CN202011285689.9

    申请日:2020-11-17

    IPC分类号: G01S17/58 G01P3/36

    摘要: 本发明的基于结构光场的三维矢量速度测量系统及测量方法涉及激光多维测速技术领域,目的是为了克服现有技术中对三维矢量速度的测量较为复杂且精度不高,以及实时性较差的问题,系统中的激光器发射出射激光通过空间光调制器进行多阶角动量复合调制生成调制信号,然后再照射待探测的运动目标生成回波信号;接收光学系统调节回波信号后使其穿过单向反射玻璃的背面加载至阵列探测器;且使得本振信号对准回波结构光场中心的径向多普勒效应光斑;阵列探测器探测四个横向多普勒效应光斑区域、以及径向多普勒效应光斑与本振信号的叠加区域,得到对应的每个时刻的总光强;并通过三维矢量速度解算模块根据每个时刻的总光强解算出运动目标的三维矢量速度。

    一种基于遗传算法的激光雷达成像质量探测方法及系统

    公开(公告)号:CN112327327A

    公开(公告)日:2021-02-05

    申请号:CN202011222485.0

    申请日:2020-11-05

    IPC分类号: G01S17/89 G01S7/497

    摘要: 一种基于遗传算法的激光雷达成像质量探测方法及系统,属于激光雷达探测技术领域,本发明为解决自适应光学波前矫正技术应用于长距离激光雷达成像技术中存在的问题。本发明方法为:通过遗传算法迭代演化出全局最优相位调制矩阵,将所述全局最优相位调制矩阵前馈加载至发射端的空间光调制器,对激光器输出光束进行相位调制后再发射;遗传算法以相位调制矩阵作为繁衍对象;遗传算法以能量利用率作为成本函数,遗传算法的成本函数为: 通过“选择”、“交叉”、“变异”迭代演化相位屏,反馈到发射端的空间光调制器,从而抵消大气湍流的影响,提高光子计数激光雷达成像质量。