基于量子头脑风暴的异构传感器网络最佳目标覆盖方法

    公开(公告)号:CN107396375B

    公开(公告)日:2020-12-22

    申请号:CN201710606778.0

    申请日:2017-07-24

    Abstract: 本发明针对在求解目标覆盖中最佳等效工作传感器分布的问题时,现有方法的寻优结果差、收敛速度慢以及联合感知概率更高时失效的缺点,提出了一种新的异构传感器网络最佳目标覆盖方法。本发明解决了当前头脑风暴优化算法无法应用于离散问题的缺点,拓宽了头脑风暴算法的应用范围。仿真结果表明,与现有的经典目标覆盖方法相比,本发明的收敛速度与收敛精度更优,从而证明了本发明的有效性。在相同条件下,联合感知概率约束更严格时传统方法将会失效,而本方法则仍然可行。本发明将头脑风暴过程中的方案交流融合体现在新方案的产生方式中,比原有头脑风暴算法的方案交流更广泛,更接近真实的头脑风暴过程。

    基于量子杂草寻优机制的小波数字水印嵌入和提取方法

    公开(公告)号:CN107578365B

    公开(公告)日:2020-09-11

    申请号:CN201710810395.5

    申请日:2017-09-11

    Abstract: 本发明提供了一种基于量子杂草寻优机制的小波数字水印嵌入和提取方法,属于信息隐藏技术领域。具体实现过程为:对水印图像进行二值化,并对二值化后的水印图像进行加密处理。把载体图像和加密后的水印图像变换到小波域中,在载体图像分成多个嵌入点,根据量子杂草寻优机制优化的不同参数,采用加性或者乘性规则嵌入水印,然后通过小波重构变换到时域完成水印的嵌入;水印的提取方法与嵌入方法对应,把含水印图像变换到小波域,在不同的嵌入点根据不同参数提取出置乱加密后的水印,整合成完整的水印,然后变换到时域中,通过置乱恢复得到提取出来的水印。和现有方法比较,该方法的不可感知性、鲁棒性及安全性都得到了提高,更具有实用性。

    一种基于量子搜寻者搜索机制的圆环阵方向图综合方法

    公开(公告)号:CN107658573B

    公开(公告)日:2020-07-28

    申请号:CN201710725355.0

    申请日:2017-08-22

    Abstract: 本发明提供的是一种基于量子搜寻者搜索机制的圆环阵方向图综合方法。实现步骤为:建立圆环阵模型;初始化量子搜寻者群;计算量子搜寻者所在位置和量子位置的适应度值;更新量子搜寻者搜索机制的搜索步长和搜素方向;根据演化规则更新量子位置;计算量子搜寻者新位置下的适应度值,确定个体历史最优量子位置,并确定全局最优量子位置;如果达到最大迭代次数,输出全局最优量子位置;把全局最优量子位置映射为圆环阵的参数,带入方向图函数,得到其对应的归一化方向图。该方法结合了量子计算与搜寻者搜索机制的优势,具有搜索速度快、全局搜索能力强的优点。

    冲击噪声下基于免疫布谷鸟搜索的双基地MIMO雷达测向方法

    公开(公告)号:CN105954731B

    公开(公告)日:2018-02-13

    申请号:CN201610265227.8

    申请日:2016-04-26

    Abstract: 本发明提供的是一种冲击噪声下基于免疫布谷鸟搜索的双基地MIMO雷达测向方法。实现步骤如下:获取采样数据;无穷范数归一化处理,获得加权信号协方差矩阵;设定参数并初始化信仰空间;初始化鸟蛋,计算适应度并降序排列,搜寻最优鸟蛋;文化机制制备疫苗;利用Lévy飞行更新鸟蛋,计算适应度并用贪婪选择策略选择;通过重筑新巢更新鸟蛋,计算适应度并用贪婪选择策略选择;根据适应度值降序排列,对较差鸟蛋接种疫苗,计算适应度并以模拟退火机制选择;根据适应度值降序排列,找到并记录最优鸟蛋;判断是否达到最大迭代次数:若未达到继续迭代,否则输出DOD与DOA的估计值。该方法收敛速度快、估计精度高、去相干能力强、抗冲击噪声能力佳,有广泛的应用前景。

    一种基于量子搜寻者搜索机制的圆环阵方向图综合方法

    公开(公告)号:CN107658573A

    公开(公告)日:2018-02-02

    申请号:CN201710725355.0

    申请日:2017-08-22

    Abstract: 本发明提供的是一种基于量子搜寻者搜索机制的圆环阵方向图综合方法。实现步骤为:建立圆环阵模型;初始化量子搜寻者群;计算量子搜寻者所在位置和量子位置的适应度值;更新量子搜寻者搜索机制的搜索步长和搜素方向;根据演化规则更新量子位置;计算量子搜寻者新位置下的适应度值,确定个体历史最优量子位置,并确定全局最优量子位置;如果达到最大迭代次数,输出全局最优量子位置;把全局最优量子位置映射为圆环阵的参数,带入方向图函数,得到其对应的归一化方向图。该方法结合了量子计算与搜寻者搜索机制的优势,具有搜索速度快、全局搜索能力强的优点。

    一种基于极化敏感阵列的相干信源测向方法

    公开(公告)号:CN107656239A

    公开(公告)日:2018-02-02

    申请号:CN201710722329.2

    申请日:2017-08-22

    CPC classification number: G01S3/782

    Abstract: 本发明提出了一种极化敏感阵列下的相干信源测向方法,属于极化敏感阵列信号处理领域。本发明公开的方法的步骤为:(1)建立极化敏感阵列测向模型;(2)初始化种群中的量子花粉,确定全局最优量子花粉;(3)每个量子花粉依概率生成一个新的量子花粉;(4)把每个量子花粉映射为花粉,计算每个量子花粉的适应度并选择量子花粉;(5)使用量子差分演进机制产生新的量子花粉,并进行选择;(6)判断是否达到最大迭代次数:若达到最大迭代次数,执行步骤(7);否则,令t=t+1,返回步骤(3)继续迭代;(7)输出全局最优量子花粉的极大似然估计值。通过本发明提供的方法在信噪比低、快拍数小以及相干信源的情况下,都可以进行有效测向。

    一种信能协同传输的OFDM中继网络资源分配方法

    公开(公告)号:CN107592674A

    公开(公告)日:2018-01-16

    申请号:CN201710810434.1

    申请日:2017-09-11

    Abstract: 本发明属于无线通信技术领域,具体涉及一种信能协同传输的OFDM中继网络资源分配方法。步骤为:建立信能协同传输的OFDM中继网络资源分配方法模型;初始化量子蟑螂群的初始种群;构造食物浓度函数,获得全局最优量子位置;量子蟑螂根据两种量子演化规则进行量子旋转角更新,根据量子演化规则爬行获得新的量子位置;把每只量子蟑螂新产生的量子位置映射为位置,更新每只量子蟑螂记忆中的自身最优量子位置和全局最优量子位置;判断是否达到最大迭代次数,若没有达到最大迭代次数,迭代次数加1,返回到第四步继续迭代,否则进入到下一步骤;结束迭代,输出资源分配结果。本发明将量子计算与蟑螂搜索机制相结合,具有搜索速度快和全局搜索能力强的优点。

    基于量子杂草寻优机制的小波数字水印嵌入和提取方法

    公开(公告)号:CN107578365A

    公开(公告)日:2018-01-12

    申请号:CN201710810395.5

    申请日:2017-09-11

    Abstract: 本发明提供了一种基于量子杂草寻优机制的小波数字水印嵌入和提取方法,属于信息隐藏技术领域。具体实现过程为:对水印图像进行二值化,并对二值化后的水印图像进行加密处理。把载体图像和加密后的水印图像变换到小波域中,在载体图像分成多个嵌入点,根据量子杂草寻优机制优化的不同参数,采用加性或者乘性规则嵌入水印,然后通过小波重构变换到时域完成水印的嵌入;水印的提取方法与嵌入方法对应,把含水印图像变换到小波域,在不同的嵌入点根据不同参数提取出置乱加密后的水印,整合成完整的水印,然后变换到时域中,通过置乱恢复得到提取出来的水印。和现有方法比较,该方法的不可感知性、鲁棒性及安全性都得到了提高,更具有实用性。

    多目标量子蝙蝠演进机制的小波数字水印生成方法

    公开(公告)号:CN107256529A

    公开(公告)日:2017-10-17

    申请号:CN201710342909.9

    申请日:2017-05-16

    Abstract: 本发明提供的是一种多目标量子蝙蝠演进机制的小波数字水印生成方法。建立设计模型,确定对应于多目标量子蝙蝠演进机制的关键参数。构造多目标小波数字水印系统最大值求解问题的多目标函数,量子蝙蝠根据目标函数值进行非支配量子位置排序和拥挤度计算,将非支配量子位置排序等级为1且拥挤度大的量子位置放入精英量子位置集。使用多目标量子蝙蝠演进机制更新量子蝙蝠的速度和量子位置,选择非支配量子位置,更新精英量子位置集。从最终的Pareto前端量子位置集中选择量子位置并映射为位置作为多目标小波数字水印的一种设计方案。本发明的实时性好且应用范围广泛,能够解决需要综合考虑不同指标要求的多目标小波数字水印设计这一技术难题。

Patent Agency Ranking