-
公开(公告)号:CN107256529B
公开(公告)日:2020-07-28
申请号:CN201710342909.9
申请日:2017-05-16
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种多目标量子蝙蝠演进机制的小波数字水印生成方法。建立设计模型,确定对应于多目标量子蝙蝠演进机制的关键参数。构造多目标小波数字水印系统最大值求解问题的多目标函数,量子蝙蝠根据目标函数值进行非支配量子位置排序和拥挤度计算,将非支配量子位置排序等级为1且拥挤度大的量子位置放入精英量子位置集。使用多目标量子蝙蝠演进机制更新量子蝙蝠的速度和量子位置,选择非支配量子位置,更新精英量子位置集。从最终的Pareto前端量子位置集中选择量子位置并映射为位置作为多目标小波数字水印的一种设计方案。本发明的实时性好且应用范围广泛,能够解决需要综合考虑不同指标要求的多目标小波数字水印设计这一技术难题。
-
公开(公告)号:CN106452625B
公开(公告)日:2019-04-12
申请号:CN201610880914.0
申请日:2016-10-09
Applicant: 哈尔滨工程大学
IPC: H04B17/382
Abstract: 本发明提供的是一种多目标绿色认知无线电系统参数生成方法。建立多目标绿色认知无线电参数设计模型,确定需要优化的多目标问题所对应的适应度函数形式。设计量子多目标多种群共生进化方法,通过量子多目标多种群共生进化方法,对种群中所有量子粒子的量子速度和位置进行更新,并使用非支配位置排序和位置拥挤度计算。使用多目标多种群共生进化方法实现确保可靠性的多目标绿色认知无线电参数设计。根据所得到的最终的非支配位置集,确保可靠性的多目标绿色认知无线电系统根据用户的实际需要选取相应的参数设计方案。本发明的使用范围广泛,能应用在现有绿色认知无线电参数设计方法所不能很好解决的确保可靠性的绿色认知无线电系统。
-
公开(公告)号:CN109190978A
公开(公告)日:2019-01-11
申请号:CN201811017379.1
申请日:2018-09-01
Applicant: 哈尔滨工程大学
Abstract: 一种基于量子鸟群演化机制的无人机资源分配方法,属于无人机自主控制领域。本发明方法的步骤为:建立无人机资源分配模型;确定无人机执行任务的种类,初始化量子鸟群;根据适应度函数进行适应度计算,并确定群体的全局最佳位置;通过量子旋转门和量子非门更新量子位置并测量;根据适应度函数进行适应度计算;更新每只量子鸟的局部最佳位置和整个群体的全局最佳位置;判断是否达到最大迭代次数,若达到则输出群体全局最佳位置,并映射为任务资源矩阵。本发明充分考虑到无人机执行不同任务时对资源的需要不同,以较少的时间代价获取资源配置比最优的无人机资源分配方案,同时满足无人机性能要求,得到更加合理的无人机资源分配方案。
-
公开(公告)号:CN107276559A
公开(公告)日:2017-10-20
申请号:CN201710333472.2
申请日:2017-05-12
Applicant: 哈尔滨工程大学
IPC: H03H17/00
Abstract: 本发明提供的是一种量子生物地理学演进机制的多约束FIR数字滤波器生成方法。初始化栖息地,计算适宜指数。将栖息地映射为量子栖息地,对量子栖息地进行降序排列,初始化每个量子栖息地。对量子栖息地进行迁移操作,再对量子栖息地的后50%进行两种变异操作。将量子栖息地映射为栖息地,计算栖息地的适宜指数,对量子栖息地进行降序排列,更新量子栖息地,更新量子信仰空间中的量子形势知识和量子规范知识。更新每个量子栖息地。循环迭代,最终输出量子形势知识中的最优量子栖息地,映射为栖息地,对应FIR数字滤波器的参数向量。本发明设计出的FIR数字滤波器具有收敛速度快,滤波器性能好和满足多约束要求等优点。
-
公开(公告)号:CN106788810A
公开(公告)日:2017-05-31
申请号:CN201611135694.5
申请日:2016-12-12
Applicant: 哈尔滨工程大学
IPC: H04B17/327 , H04B17/336 , H04B17/382
Abstract: 本发明提供的是一种绿色认知无线电的无线能量采集和分配方法。首先,建立绿色认知无线电无线能量采集和分配模型。其次,设计量子灰狼搜索机制,通过量子灰狼搜索方法,对量子灰狼的量子位置进行更新。使用量子灰狼搜索方法实现绿色认知无线电的无线能量采集和分配。然后,根据所得到的全局最优量子位置,并将其映射为位置,作为认知无线电无线能量采集和分配的方案。本发明在满足系统所需吞吐量的条件下,寻求系统的最小能量消耗,通过无线能量传输、采集和分配实现认知无线电系统的自供能,进而无需额外的能源供应给装置,并可以在一定程度上储存能量。
-
公开(公告)号:CN109376329B
公开(公告)日:2022-09-27
申请号:CN201811033518.X
申请日:2018-09-05
Applicant: 哈尔滨工程大学
Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于量子鸟群演化机制的阵列幅相误差的校正方法。包括进行相位误差校正,进行幅度误差校正;利用已知独立信源建立接收数据模型后每次校正的步骤为:初始化量子鸟群;计算每只量子鸟量子位置的适应度,得到每只量子鸟的局部最优量子位置和量子鸟群全局最优量子位置;通过更新每只量子鸟的量子旋转角更新量子位置;计算每只量子鸟量子位置更新后的适应度,更新每只量子鸟局部最优量子位置和量子鸟群全局最优量子位置;判断是否达到最大迭代次数;输出全局最优量子位置并映射为相位或幅相误差矩阵。本发明只需一个已知的辅助信源,算法模型简单,运算量较少,具有收敛速度快,收敛精度高的优点。
-
公开(公告)号:CN108509840B
公开(公告)日:2021-10-01
申请号:CN201810106446.0
申请日:2018-02-02
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及一种基于量子记忆优化机制的高光谱遥感图像波段选择方法,首先计算高光谱遥感图像所有波段的相关性向量或者相关性矩阵;对相关性向量或者相关性矩阵的每个元素求其倒数,并分别命名其为独立性向量或者独立性矩阵;依据所有波段的独立性向量或者独立性矩阵设定波段子空间独立性容量阈值,进行波段子空间划分,在每个波段子空间中选择一个波段,或从每个波段子空间内按比例选择波段,确定所选波段子集的维数;然后通过设计模拟人类认知过程的量子记忆优化机制并结合量子旋转门实现对最优波段子集的优化搜寻。本发明不仅适用于多维优化问题,同时也适用于高维优化问题,与已有算法相比分类精度高,运行时间短,更具有工程应用和推广价值。
-
公开(公告)号:CN107657098B
公开(公告)日:2021-01-05
申请号:CN201710834252.8
申请日:2017-09-15
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06F30/18 , G06N10/00 , G06N3/00 , G06F111/04
Abstract: 本发明提供的是一种基于量子鸡群演化机制的环形天线阵列稀疏方法。1、建立环形天线阵列稀疏模型;2、设置初始参数;3、设计适应度函数;4、计算种群中每只鸡的适应度值,区分鸡的种类并划分子种群;5、6及7分别构建公鸡、母鸡和小鸡的量子矢量旋转角更新公式,更新量子矢量旋转角,更新的量子位置;8、过测量的方式转化为其{0,1}编码位置,计算该{0,1}编码位置的适应度值,并更新每只鸡的个体历史最优解和全局最优解;9:判断是否达到最大迭代次数。该方法具有更快的收敛速度和更高的收敛精度,并在解决环形天线阵列稀疏构建的问题中具有很好的稀疏效果,很大程度的降低了天线阵列系统的复杂度和成本,达到了预期的要求。
-
公开(公告)号:CN106788810B
公开(公告)日:2020-06-16
申请号:CN201611135694.5
申请日:2016-12-12
Applicant: 哈尔滨工程大学
IPC: H04B17/327 , H04B17/336 , H04B17/382
Abstract: 本发明提供的是一种绿色认知无线电的无线能量采集和分配方法。首先,建立绿色认知无线电无线能量采集和分配模型。其次,设计量子灰狼搜索机制,通过量子灰狼搜索方法,对量子灰狼的量子位置进行更新。使用量子灰狼搜索方法实现绿色认知无线电的无线能量采集和分配。然后,根据所得到的全局最优量子位置,并将其映射为位置,作为认知无线电无线能量采集和分配的方案。本发明在满足系统所需吞吐量的条件下,寻求系统的最小能量消耗,通过无线能量传输、采集和分配实现认知无线电系统的自供能,进而无需额外的能源供应给装置,并可以在一定程度上储存能量。
-
公开(公告)号:CN109829237A
公开(公告)日:2019-05-31
申请号:CN201910103520.8
申请日:2019-02-01
Applicant: 哈尔滨工程大学
IPC: G06F17/50 , G06N3/00 , G06N99/00 , H04B17/391
Abstract: 本发明涉及一种基于量子海鞘群的无线信道衰减模型拟合方法,具体为:设置Nakagami-m分布的参数并获取Nakagami-m逆累积分布的准确数据集;初始化海鞘群的量子位置及位置;对所有海鞘位置进行适应度评价,并确定食物的量子位置与位置;根据策略一或策略二依次更新选定的海鞘的量子旋转角、量子位置与位置;依次对选定的海鞘按照策略三更新量子旋转角、量子位置与位置;对所有海鞘位置进行适应度评价,并更新食物的量子位置与位置;最终输出的食物位置即为拟合方程的最佳系数,即可得到Nakagami-m逆累积分布函数的最佳拟合方程。本发明具有更高的拟合精度、更快的拟合速度以及更广的适用范围。
-
-
-
-
-
-
-
-
-