亚微米约瑟夫森隧道结及其制备方法

    公开(公告)号:CN108539004B

    公开(公告)日:2023-12-05

    申请号:CN201810375704.5

    申请日:2018-04-25

    Abstract: 本发明提供一种亚微米约瑟夫森隧道结及其制备方法,包括如下步骤:1)提供一衬底,并于衬底的上表面形成底层超导薄膜层、绝缘薄膜层及顶层超导薄膜层;2)刻蚀去除部分顶层超导薄膜层、部分绝缘薄膜层及部分底层超导薄膜层;3)于步骤2)所得到结构的表面形成一第一绝缘层;4)于步骤3)所得到结构的表面形成第二绝缘层;5)于步骤4)所述得到结构的表面形成附加超导薄膜层,并刻蚀附加超导薄膜层以形成第二亚微米线条,第二亚微米线条至少与第一亚微米线条呈十字交叉连接。本发明可以有效解决现有技术中存在的电极窗口问题;双层绝缘层不仅改善了边缘效应、降低了台阶过渡处漏电流的产生,还有利于提高约瑟夫森结的质量及可靠性。(56)对比文件张雪;张国峰;金华;刘晓宇;王镇.超导Nb薄膜的RIE刻蚀与表征.低温物理学报.2016,(第04期),余铁军,张雪霞,高保新,吴培亨.超导Fresnel公式及其应用.低温物理学报.1996,(第02期),

    一种磁源的实时定位系统及实时定位方法

    公开(公告)号:CN109633540B

    公开(公告)日:2023-04-14

    申请号:CN201910061731.X

    申请日:2019-01-23

    Abstract: 本发明提供一种磁源的实时定位系统及实时定位方法,所述定位系统包括:设于不同测点的至少两组磁源定位装置;其中,磁源定位装置包括:安装支架,用于提供安装平台;全张量磁梯度测量组件,设于所述安装支架上,用于同步测量待定位磁源在所述全张量磁梯度测量组件处产生的磁场梯度值;位置定位器,刚性连接于所述全张量磁梯度测量组件,用于测量所述全张量磁梯度测量组件在地理坐标系下的位置信息;测控组件,电连接于所述全张量磁梯度测量组件及所述位置定位器,用于采集所述磁场梯度值及所述位置信息并根据采集的数据对所述待定位磁源进行实时定位。通过本发明解决了现有定位方法中存在虚解或受基线长度限制而无法实现长距离高精度定位的问题。

    多通道超导量子干涉仪测量系统及无损串扰标定方法

    公开(公告)号:CN115389998A

    公开(公告)日:2022-11-25

    申请号:CN202211056017.X

    申请日:2022-08-31

    Abstract: 本发明提供一种多通道超导量子干涉仪测量系统及无损串扰标定方法,1)将多通道超导量子干涉仪测量系统调整为外反馈模式,对拾取线圈和外反馈线圈引起的通道串扰系数分别进行标定,并基于外反馈线圈引起的通道串扰系数通过物理抵扣的方式消除外反馈模式的串扰;2)将多通道超导量子干涉仪测量系统调整为内反馈模式,对内反馈线圈引起的通道串扰系数进行标定,并基于拾取线圈及内反馈线圈引起的通道串扰系数通过物理抵扣的方式消除内反馈模式的串扰。本发明在实现集成Pickup线圈的多通道SQUID测量系统串扰无损标定和消除的同时,精度高;本发明实现简单、操作简便,适于超导航磁等基于SQUID的高精度磁测量领域中应用。

    一种杜瓦瓶
    115.
    发明授权

    公开(公告)号:CN114484262B

    公开(公告)日:2022-11-08

    申请号:CN202210130016.9

    申请日:2022-02-11

    Abstract: 本申请涉及超导磁体冷却装置技术领域,特别是涉及一种杜瓦瓶,包括:内胆、石墨烯冷屏、外胆和冷凝管;所述内胆与所述外胆相连接形成内腔,所述石墨烯冷屏设置于所述内腔中;所述冷凝管设置于所述内胆上,所述内胆上设置有至少一个冷气排气孔,所述冷凝管的一端与所述冷气排气孔连通,所述冷凝管的另一端与外部连通;所述石墨烯冷屏与所述冷凝管接触设置;所述石墨烯冷屏具有至少一层石墨烯薄膜层。通过设置石墨烯冷屏,石墨烯冷屏上的石墨烯薄膜具有较好的低温导热效果和较低的热噪声,减小了杜瓦热噪声,同时消除了杜瓦产生的涡流;本申请通过设置冷凝管,充分地利用了杜瓦瓶内低温气体的显热给石墨烯冷屏降温,减小了杜瓦瓶内的液体蒸发率。

    一种涡流干扰补偿方法及装置

    公开(公告)号:CN115128688A

    公开(公告)日:2022-09-30

    申请号:CN202210994289.8

    申请日:2022-08-17

    Abstract: 本发明提供一种涡流干扰补偿方法及装置,包括:将感应模块放置于标定模块的中心位置上;标定模块对感应模块分别施加单方向均匀磁场;感应模块基于每一个采样频率获取对应的磁场信号及磁梯度信号;以每一个采样频率对应的磁场信号的相位作为初始相位,经分离、提取操作,从对应的磁梯度信号中获取涡流信号;将涡流信号的磁场强度与对应的采样频率进行拟合,得到X轴、Y轴及Z轴的涡流系数;利用涡流系数去除磁梯度信号中的涡流干扰,完成涡流干扰补偿。在感应模块与标定模块相对位置确定的情况下,涡流系数唯一确定,无需反复标定。通过在地面对涡流系数标定后,确定各种复杂环境下的涡流干扰表达式,进行补偿,实现简单,操作简便,适用范围广泛。

    一种瞬变电磁信号的信号接收装置
    117.
    发明公开

    公开(公告)号:CN114779353A

    公开(公告)日:2022-07-22

    申请号:CN202210383310.0

    申请日:2022-04-12

    Abstract: 本发明公开了一种瞬变电磁信号的信号接收装置,涉及电磁探测技术领域,解决了在瞬变电磁信号接收中现有的感应线圈受限于线圈的电阻,常常导致感应线圈的探测灵敏度较低的问题。具体方案为该信号接收装置包括真空隔热瓶、探测线圈以及数据采集单元;所述真空隔热瓶内温度低于零下196摄氏度;所述探测线圈置于所述真空隔热瓶内底部;所述数据采集单元与所述探测线圈电连接。本发明针对在瞬变电磁信号接收中常规感应线圈内阻较高的问题,采用将探测线圈放置于温度低于零下196摄氏度的真空隔热瓶内,通过低温环境降低探测线圈电阻值的方法,提升线圈的探测灵敏度。

    一种杜瓦瓶
    118.
    发明公开

    公开(公告)号:CN114484262A

    公开(公告)日:2022-05-13

    申请号:CN202210130016.9

    申请日:2022-02-11

    Abstract: 本申请涉及超导磁体冷却装置技术领域,特别是涉及一种杜瓦瓶,包括:内胆、石墨烯冷屏、外胆和冷凝管;所述内胆与所述外胆相连接形成内腔,所述石墨烯冷屏设置于所述内腔中;所述冷凝管设置于所述内胆上,所述内胆上设置有至少一个冷气排气孔,所述冷凝管的一端与所述冷气排气孔连通,所述冷凝管的另一端与外部连通;所述石墨烯冷屏与所述冷凝管接触设置;所述石墨烯冷屏具有至少一层石墨烯薄膜层。通过设置石墨烯冷屏,石墨烯冷屏上的石墨烯薄膜具有较好的低温导热效果和较低的热噪声,减小了杜瓦热噪声,同时消除了杜瓦产生的涡流;本申请通过设置冷凝管,充分地利用了杜瓦瓶内低温气体的显热给石墨烯冷屏降温,减小了杜瓦瓶内的液体蒸发率。

    一种超导航磁气压稳压装置及气压稳压方法

    公开(公告)号:CN110109032B

    公开(公告)日:2021-08-20

    申请号:CN201910371859.6

    申请日:2019-05-06

    Abstract: 本发明提供一种超导航磁气压稳压装置及方法,所述装置包括:设于容器杜瓦出气管道上的气压检测模块,用于检测容器杜瓦内的气压;电连接于气压检测模块的控制模块,用于比较检测气压值和预设气压值,并根据比较结果分别输出第一、第二、第三控制信号;设于容器杜瓦的出气管道上、且位于气压检测模块的上方,同时电连接于控制模块的气压调节模块,用于根据第一控制信号控制出气管道的开/关时间以减小容器杜瓦内的气压;或根据第二控制信号控制出气管道的开/关时间以维持容器杜瓦内的气压;或根据第三控制信号控制出气管道关闭以增加容器杜瓦内的气压,从而实现容器杜瓦内的气压稳定。通过本发明解决了现有因气压变化而引入测量误差的问题。

    一种SQUID测试组件串扰的标定、消除方法及系统

    公开(公告)号:CN113267741A

    公开(公告)日:2021-08-17

    申请号:CN202110540178.5

    申请日:2021-05-18

    Abstract: 本发明提供一种SQUID测试组件串扰的标定、消除方法及系统,包括:模拟与实际被测磁场强度相等或相同量级的正弦磁场;在多通道SQUID测量模块中被串扰通道及串扰通道均正常工作的情况下,测量被串扰通道及串扰通道的输出信号;在被串扰通道正常工作、串扰通道关闭的情况下,测量被串扰通道的输出信号;基于被串扰通道在有无串扰两种情况下的输出信号变化值及串扰通道的输出信号,计算被串扰通道与串扰通道之间的串扰系数;重复上述步骤依次计算多通道SQUID测量模块中各通道之间的串扰系数,并获取多通道SQUID测量模块的通道串扰系数矩阵。本发明不仅能提高串扰标定的精度、简化串扰的测量步骤,而且能整体对SQUID测量系统的串扰进行精确标定和消除。

Patent Agency Ranking