-
公开(公告)号:CN113338888B
公开(公告)日:2022-05-13
申请号:CN202110755442.7
申请日:2021-07-05
申请人: 中国矿业大学
IPC分类号: E21B43/263 , E21B43/08 , E21B47/00 , E21B41/00 , E21B33/13
摘要: 本发明公开了一种水平分支井燃爆压裂促进竖井页岩气开采的方法,先打设竖井及多个水平分支井,然后向其中一个水平分支井内安装首个燃爆封孔器,使其与水平分支井的最深处之间形成封孔段;进行燃爆压裂时,先向封孔段内注入燃爆气体,通过检测装置实时检测,直至达到爆炸所需值时,停止燃爆气体注入,最后控制点火头点火,从而引发封孔段内的燃爆气体发生爆炸,气体爆炸产生的高温高压气体和爆轰冲击波,通过筛管上的网孔对周围页岩进行一次冲击压裂过程,重复多次采用后退式燃爆压裂使该水平分支井周围形成裂隙网络;因此本发明无需水源即能使储层内部产生复杂的裂隙网络,同时还能使裂隙网络保持较长时间的连通性,从而保证页岩气的抽采。
-
公开(公告)号:CN114412418A
公开(公告)日:2022-04-29
申请号:CN202210072377.2
申请日:2022-01-21
申请人: 中国矿业大学
摘要: 本发明公开了一种用于叠置煤层气藏多向闭环抽采煤层气的方法,先在叠置煤层气藏形成水平井和四个抽采井;在水平井和各个抽采井布设闭环抽采系统;然后将气化剂依次注入水平井的四个水平段,通过气化反应会产生大量辐射热和CO2气体,产生裂隙网络,裂隙网络将上煤层、岩层和下煤层进行连通,并在煤体升温降低CH4气体吸附性和CO2气体竞争吸附的双重作用下,使得上煤层和下煤层内的CH4气体快速解吸;气化反应后的CO2气体经过分离后与发电产生的CO2气体可再次注入上煤层中,再次通过CO2吸附性能促进CH4气体的驱替,整个工作流程形成一个闭环,同时开采出的CH4气体通过CH4发电机组转化成电能进行的后续利用,实现了煤层气资源的高效开采与利用。
-
公开(公告)号:CN113432645B
公开(公告)日:2022-04-15
申请号:CN202110710122.X
申请日:2021-06-25
申请人: 中国矿业大学
摘要: 本发明公开一种基于NMR和北斗遥感联测的大坝及边坡稳定性监测预警方法,属灾害监测预警领域。在大坝或边坡上建立监控中心、边坡监控分站和大坝监控分站;在边坡上及大坝上施工监测钻孔,紧贴孔壁放入PVC套管,并在PVC套管中下入微型核磁共振探头;用升降控制器上下移动微型核磁共振探头来采集钻孔周围岩土体或坝体的核磁信号,利用北斗遥感系统对边坡或大坝进行实时拍照,最后将监测数据汇总到监控中心;对核磁数据进行反演,得到岩土体或坝体的含水率、渗透率及孔隙度数据,对比图片计算边坡或坝体的表面位移,将数据实时与数据库进行对比,当数据出现突变时及时发布预警信号,可快速监测多个数据,操作简单,精确性高。
-
公开(公告)号:CN113450543B
公开(公告)日:2022-04-12
申请号:CN202110710123.4
申请日:2021-06-25
申请人: 中国矿业大学 , 苏州纽迈分析仪器股份有限公司 , 中国石油大学(华东)
IPC分类号: G08B21/10
摘要: 本发明公开一种基于核磁共振微缩传感器的地下空间水缘性灾害智能报警方法,适用于城市地下空间对不可视水源的监测。采用电阻率测试法对成型地下空间的主要水源分布区域进行探测,并根据低电阻分布特征获取潜在水源位置;钻取不同围岩岩心,利用低场核磁共振法测试完全干燥状态下的岩心核磁信号;分别向潜在水源位置钻取不同深度、不同角度的监测钻孔,清除钻孔内的残余水渣并干燥钻孔,向钻孔内送入低场核磁共振微缩传感器,实现围岩内水的空间分布演化实时化;根据获得的核磁孔隙特征和水信号,构建诱发水害的预警阈值和安全评估准则,为突水灾害预警及防治提供充分的数据基础。该方法操作简单,能够实现岩层潜在水缘性灾害的智能报警。
-
公开(公告)号:CN112761586B
公开(公告)日:2022-04-12
申请号:CN202110086405.1
申请日:2021-01-22
申请人: 中国矿业大学
IPC分类号: E21B43/00 , E21B43/116 , E21B43/26 , E21B47/00
摘要: 一种钻孔甲烷自循环燃爆压裂强化抽采方法,适用煤矿井下瓦斯的高效抽采。首在煤层施工瓦斯抽采钻孔、燃爆压裂钻孔和导向孔;然后将瓦斯抽采管和注气管分别放入瓦斯抽采钻孔和燃爆压裂钻孔并封孔;抽采瓦斯经过抽采泵、过滤装置和气体混配室预混为浓度9%‑10%的混合气体,经储气罐、增压泵后由注气管注入燃爆压裂钻孔;启动点火装置,诱导甲烷燃爆压裂,燃爆产生的高温高压冲击波经导向后致裂煤层产生定向裂隙网络,同时高温促进甲烷解吸,使瓦斯抽采孔和燃爆压裂孔甲烷浓度均大幅提升;最后对瓦斯抽采孔和燃爆压裂孔同步进行瓦斯抽采。该方法利用煤层原位解吸甲烷燃爆构造立体裂缝网络,能显著提高甲烷的抽采效率。
-
公开(公告)号:CN113432645A
公开(公告)日:2021-09-24
申请号:CN202110710122.X
申请日:2021-06-25
申请人: 中国矿业大学
摘要: 本发明公开一种基于NMR和北斗遥感联测的大坝及边坡稳定性监测预警方法,属灾害监测预警领域。在大坝或边坡上建立监控中心、边坡监控分站和大坝监控分站;在边坡上及大坝上施工监测钻孔,紧贴孔壁放入PVC套管,并在PVC套管中下入微型核磁共振探头;用升降控制器上下移动微型核磁共振探头来采集钻孔周围岩土体或坝体的核磁信号,利用北斗遥感系统对边坡或大坝进行实时拍照,最后将监测数据汇总到监控中心;对核磁数据进行反演,得到岩土体或坝体的含水率、渗透率及孔隙度数据,对比图片计算边坡或坝体的表面位移,将数据实时与数据库进行对比,当数据出现突变时及时发布预警信号,可快速监测多个数据,操作简单,精确性高。
-
公开(公告)号:CN113338889A
公开(公告)日:2021-09-03
申请号:CN202110755593.2
申请日:2021-07-05
申请人: 中国矿业大学
摘要: 本发明公开了一种基于燃爆压裂和水力压裂相结合的页岩气促产方法,先打设燃爆压裂水平井,接着在燃爆压裂水平井内形成一个射孔裂隙并安装首个燃爆封孔器,并形成封孔段,若在设定时间内封孔段内达到爆炸所需值,则引发燃爆气体对射孔裂隙进行一次冲击压裂;若未达到爆炸所需值,则对封孔段内补充燃爆气体,然后完成一次燃爆压裂,然后重复上述过程通过后退式燃爆压裂使燃爆压裂水平井周围形成燃爆压裂裂隙网络并进行封孔;最后在燃爆压裂水平井下方打设水力压裂水平井,并采用后退式水力压裂的方法,使水力压裂水平井周围形成水力压裂裂缝区,且该裂缝区能与燃爆压裂裂隙网络相连通,此时通过水力压裂水平井对该页岩储层进行页岩气的抽采工作。
-
公开(公告)号:CN113236196A
公开(公告)日:2021-08-10
申请号:CN202110709972.8
申请日:2021-06-25
申请人: 中国矿业大学
IPC分类号: E21B43/01 , E21B41/00 , E21B47/001 , E21B47/092
摘要: 一种基于核磁共振的可燃冰开采储层监测方法,主要适用于深海可燃冰储层开采过程中储层内可燃冰状态及孔隙结构变化的动态监测。首先通过海面作业平台,向下打入探测钻孔直至游离气储层,钻取可燃冰储层及游离气储层样品进行检测,同时查明可燃冰储层参数如深度、厚度等;向游离气储层内打入水平井进行可燃冰降压法开采,开采过程中利用核磁共振微缩传感器对不同位置处的游离气储层及可燃冰储层进行实时动态监测,得到储层不同位置处甲烷和水分的生成速率及空间运移,同时能够对储层沉降及范围进行监测预警,为可燃冰的持续稳定开采提供指导。其方法简便,易操作,安全可靠,精确度高,能够实现对深海可燃冰储层开采过程中的实时监测和预警。
-
公开(公告)号:CN113006867A
公开(公告)日:2021-06-22
申请号:CN202110459430.X
申请日:2021-04-27
申请人: 中国矿业大学 , 陕西陕煤铜川矿业有限公司陈家山煤矿 , 江苏拓海煤矿钻探机械有限公司
摘要: 一种高瓦斯低洼孤岛工作面煤层采前多灾害联合防治方法,属瓦斯治理技术领域。通过在本煤层中间打一条疏放水巷道作为多灾害防治措施集中地,向两侧采空区积水区域打疏放水钻孔将积水疏放达标;同时在疏放水巷道端头、两侧钻场和两侧煤壁分别施工掘进前预抽瓦斯钻孔、本煤层瓦斯预抽钻孔和本煤层顺层瓦斯预抽钻孔将本煤层瓦斯抽采达标;之后加速掘进拟掘进、回风巷道,最后在疏放水巷道采用后退分段式充填方法,砌筑充填密闭墙,用充填泵充填疏放水巷道,消减自燃发火和冲击地压的风险,能使灾害防治措施集中化、简便化,在降低灾害防治成本的同时加快煤层开采周期,从而大大提高煤矿经济效益,对于高瓦斯低洼孤岛工作面煤层安全开采意义重大。
-
公开(公告)号:CN112253220B
公开(公告)日:2021-06-04
申请号:CN202011013329.3
申请日:2020-09-24
申请人: 中国矿业大学
摘要: 本发明公开了一种基于超声波的自增压煤体致裂增透强化瓦斯抽采方法,先在高位抽放巷内向煤层打设增透钻孔,并通过两个封孔囊袋及注浆对增透钻孔进行密封;利用水自身重力向增透钻孔最深处注水,当内部水压超过注水管内水的重力,此时注水管上的单向球阀关闭停止注水;通过超声波振子发出超声波,超声波在水中传递的损耗使水温升高汽化增大增透钻孔最深处的压力,同时超声波在水中传递会产生空化效应,空化泡的产生和破灭会形成极高的拉应力;在空化效应和汽化增压的共同作用下对周围的煤体压裂形成裂隙;整个过程无需水泵,仅利用水的重力和超声波结合就能对煤体持续进行压裂增透,从而保证增透后对煤层的瓦斯抽采效果,并且有效降低能源消耗。
-
-
-
-
-
-
-
-
-