一种基于频谱的太赫兹材料复折射率测量方法

    公开(公告)号:CN113310941A

    公开(公告)日:2021-08-27

    申请号:CN202110386569.6

    申请日:2021-04-12

    Abstract: 本发明公开了一种基于频谱的太赫兹材料复折射率测量方法,包括,利用频谱测量仪进行样品测量,基于测量数据得到离散频谱上的频率透射率T(f)和时域反射特性t(τ);将所述频率透射率T(f)表示为法布里‑珀罗干涉(FP干涉)形式,并基于所述时域反射特性t(τ)取得τ0;定义高斯函数g(τ,τ0)和其对应的频谱G(f,τ0);基于所述高斯函数g(τ,τ0)对所述频率透射率T(f)进行处理获得更新后的频谱透射率T′(f,τ0);基于所述处理后的频谱透射率得到所述局部极大值(极小值)组数m和复折射率实部n,并计算得到初始相位φ;根据Kramers‑Kronig关系计算所述复折射率的虚部k,得到所述样品的复折射率和吸光度。

    一种冷原子系统自旋压缩态的制备方法

    公开(公告)号:CN113014257A

    公开(公告)日:2021-06-22

    申请号:CN202110201423.X

    申请日:2021-02-23

    Abstract: 本发明公开一种冷原子系统自旋压缩态的制备方法,包括:提供一两分量自旋系统,其包括二维势阱,所述二维势阱具有其原子自旋态依赖于原子相互作用的能级结构;向所述二维势阱施加拉曼光,以使所述二维势阱中由原子相互作用等效产生的自旋相互作用不为零;记录来自二维势阱的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数最小时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实现简单,突破量子系统测量极限的限制,为提高量子精密测量精度提供新的方法,使得自旋压缩态更加稳定。

    一种用于便携式原子钟的光学系统及其控制方法

    公开(公告)号:CN104090482A

    公开(公告)日:2014-10-08

    申请号:CN201410363741.6

    申请日:2014-07-28

    Abstract: 本发明公开了一种用于便携式原子钟的光学系统,该光学系统包括VCSEL激光器、透镜、四分之一波片、热敏电阻测量电路、PID控制电路、TEC组件和光电探测器;所述VCSEL激光器依次与所述热敏电阻测量电路、所述PID控制电路和所述TEC组件电连接;所述VCSEL激光器和所述四分之一波片分别设置于所述透镜的两侧,所述四分之一波片的远离所述透镜的一侧设置有所述光电探测器;所述VCSEL激光器、所述透镜、所述四分之一波片和所述光电探测器位于同一直线上。本发明提供的光学系统具有小型化、低功耗的优点,其体积小于10ml,其功耗小于6mW,且所述光学系统能够用于便携式原子钟。

    一种光波增透型原子气泡及其使用方法

    公开(公告)号:CN103501180A

    公开(公告)日:2014-01-08

    申请号:CN201310429757.8

    申请日:2013-09-18

    Abstract: 本发明公开了一种光波增透型原子气泡及其使用方法,该光波增透型原子气泡(1)包括入射壁(11)、出射壁(12)和侧壁(13);入射壁(11)的两侧设有第一增透介质层(14)和第二增透介质层(15);出射壁(12)的两侧设有第三增透介质层(16)和第四增透介质层(17);入射壁(11)、出射壁(12)、第一增透介质层(14)、第二增透介质层(15)、第三增透介质层(16)和第四增透介质层(17)相互平行;入射壁(11)、出射壁(12)和侧壁(13)围成的空腔(18)内充有原子气体。本发明的光波增透型原子气泡的入射壁和出射壁的两侧都设有增透介质层,能够避免入射壁和出射壁对光波的反射作用,一方面提高光波增透型原子气泡对光波的透射率,降低光波增透型原子气泡的功耗;另一方面避免对光源的损毁,延长光源的使用寿命。

    含缓冲气的原子气体中各组分比例的检测方法及装置

    公开(公告)号:CN103472000A

    公开(公告)日:2013-12-25

    申请号:CN201310446997.9

    申请日:2013-09-25

    Abstract: 本发明公开了含缓冲气的原子气体中各组分比例的检测方法:将准直激光器作为探测光源输出准直光束;准直光束通过格兰泰勒棱镜得到线偏振准直光束;线偏振准直光束的总光强由光强功率计进行测量并将测量得到的数据传输至电脑;线偏振准直光束入射到样品台上并在通过样品台后形成向四周扩散的传输光;向四周扩散的传输光的光强由积分球和示波器进行测量并将测量得到的数据传输至电脑;向四周扩散的传输光的光强和线偏振准直光束的总光强由电脑进行数据分析计算得到向四周扩散的传输光的透射率,进一步计算得出含缓冲气体的原子气体中非缓冲气体和缓冲气体的组分比例F。解决了封闭气室中含缓冲气体的原子气体组分无损检测问题。同时还公开了该装置。

    超稳光学参考腔系统
    16.
    发明公开

    公开(公告)号:CN116826492A

    公开(公告)日:2023-09-29

    申请号:CN202310860131.6

    申请日:2023-07-13

    Abstract: 本发明涉及激光器技术领域,尤其涉及一种超稳光学参考腔系统,旨在解决现有超稳窄线宽激光器无法同时提供不同波长的稳频激光的问题。本发明包括超稳光学参考腔体、第一腔镜对、第二腔镜对、第一偏振分光棱镜、第二偏振分光棱镜、第一四分之一波片和第二四分之一波片;超稳光学参考腔体包括第一通光孔径和第二通光孔径,第一合束激光经第一偏振分光棱镜进入第一通光孔径,稳频后第一合束激光再经过第一偏振分光棱镜并输出;第二合束激光经第二偏振分光棱镜后进入第二通光孔径,稳频后第二合束激光再经过第二偏振分光棱镜并输出。通过多个稳频光路实现了在不增加空间占用的条件下多通路不同波长的稳频输出。

    一种基于频谱的太赫兹材料复折射率测量方法

    公开(公告)号:CN113310941B

    公开(公告)日:2023-05-16

    申请号:CN202110386569.6

    申请日:2021-04-12

    Abstract: 本发明公开了一种基于频谱的太赫兹材料复折射率测量方法,包括,利用频谱测量仪进行样品测量,基于测量数据得到离散频谱上的频率透射率T(f)和时域反射特性t(τ);将所述频率透射率T(f)表示为法布里‑珀罗干涉(FP干涉)形式,并基于所述时域反射特性t(τ)取得τ0;定义高斯函数g(τ,τ0)和其对应的频谱G(f,τ0);基于所述高斯函数g(τ,τ0)对所述频率透射率T(f)进行处理获得更新后的频谱透射率T′(f,τ0);基于所述处理后的频谱透射率得到所述局部极大值(极小值)组数m和复折射率实部n,并计算得到初始相位φ;根据Kramers‑Kronig关系计算所述复折射率的虚部k,得到所述样品的复折射率和吸光度。

    一种被动相位补偿光频传递系统
    18.
    发明公开

    公开(公告)号:CN115833948A

    公开(公告)日:2023-03-21

    申请号:CN202211163747.X

    申请日:2022-09-23

    Abstract: 本申请实施例公开一种被动相位补偿光频传递系统,包括:激光器用于输出第一信号至第一光纤耦合器;第一光纤耦合器用于将第一信号分别输入至第二光纤耦合器和第一声光调制器;第一声光调制器用于根据第一信号和补偿信号生成第二信号,并输入至第一光学终端;第一光学终端用于输出第二信号至第一自由空间链路;第二光纤耦合器用于输出第一信号至测量模块和输出第一信号和第三信号至干涉模块;干涉模块用于输出第四信号至测量模块且根据第一信号和第三信号生成补偿信号,测量模块用于根据第一信号和第四信号生成第三信号。本发明通过被动相位补偿方式有效提升了链路噪声的补偿精度,可在多种复杂应用场景下实现高精度、动态自由空间光频传递。

    一种信号时延估计及补偿方法、处理装置

    公开(公告)号:CN115632969A

    公开(公告)日:2023-01-20

    申请号:CN202211245731.3

    申请日:2022-10-12

    Abstract: 本申请公开了一种信号时延估计方法,包括以下步骤:对输入信号和输出信号的相位谱作线性拟合,分别得到输入拟合线、输出拟合线;计算所述输入拟合线和所述输出拟合线的斜率,进一步,根据所述斜率计算输出信号和输入信号的时延。本申请还包含一种信号时延补偿方法,根据所述时延值对输出信号进行时延补偿。本申请还包含实现上述方法的装置。本申请解决现有技术的延时处理精度受到采样率限制的问题。

    测量原子束流速度的方法及系统
    20.
    发明公开

    公开(公告)号:CN115629412A

    公开(公告)日:2023-01-20

    申请号:CN202211218822.8

    申请日:2022-10-07

    Abstract: 本发明公开了一种测量原子束流速度的方法及系统,该方法采用第一共振激光激发第二共振作用区域内处于基态的原子,第一共振激光为频率锁定在原子的第一共振跃迁谱线上的激光;在检测到的荧光信号强度达到第一稳定幅度值后,在第一时间点采用第二共振激光激发第一共振作用区域内处于基态的原子,并确定荧光信号强度开始减弱的第二时间点,第二共振激光为频率锁定在原子的第二共振跃迁谱线上的激光,且原子的第二共振跃迁谱线的激发态能级寿命长于第一共振跃迁谱线;根据确定的原子渡越位移和原子渡越时间,测定原子束流的速度信息。本发明解决了以往实验中推算原子束流速度的方式,存在测量精度较差、可靠性较低、且缺乏实测验证的难题。

Patent Agency Ranking