一种多光束平行激光生成装置、平行准直调节装置及方法

    公开(公告)号:CN114705228A

    公开(公告)日:2022-07-05

    申请号:CN202210303034.2

    申请日:2022-03-25

    IPC分类号: G01D5/26 G02B27/10 G02B27/30

    摘要: 本申请公开了一种多光束平行激光生成装置、平行准直调节装置及方法。通过激光多光束平行准直调节装置及方法,利用两个分束镜的反射光进行干涉,观察干涉条纹后通过调节装置来调节激光光源的平行度及准直度,以此得到高平行度和准直度的激光用于多光束平行激光生成装置;利用中空屋脊棱镜反射镜和猫眼装置,形成多次反射,产生多束平行光。本发明降低了测量过程中平行度上的误差、增加了准直装置,适用于平行度和准直度要求高的多光束激光物理实验、避免了实验中的杂光干扰且降低了使用的透镜数量和大小、节约了成本。

    一种光频原子钟闭环锁定状态探测系统

    公开(公告)号:CN114355753A

    公开(公告)日:2022-04-15

    申请号:CN202111627492.3

    申请日:2021-12-28

    IPC分类号: G04F5/14 G01D21/02

    摘要: 本发明提供了一种光频原子钟闭环锁定状态探测系统,包括激光发射模块、原子束管、参数探测模块、PID模块、荧光探测器、专家诊断库、反馈控制模块;参数探测模块包含多个参数探测单元,第二波长激光在第一波长激光与原子束管的原子作用前、后的波长和功率值;荧光探测器探测后的电信号电压值;经过PID模块后的电信号电压值;原子炉温度、原子共振信号以及原子束管的温度;PID模块检测PID锁定参数。本发明瞄准目前原子光钟闭环锁定状态缺乏智能化监测的问题,创新性地提出利用多个电路模块,探测电压、带宽等指标,并对多项参数进行实时监测控制,分析内在关联,有助于提高系统闭环锁定指标。

    一种激光功率的量子测量方法

    公开(公告)号:CN108917922B

    公开(公告)日:2021-09-10

    申请号:CN201810742056.2

    申请日:2018-07-09

    IPC分类号: G01J1/00

    摘要: 本发明公开了一种激光功率的量子测量方法。本发明利用了原子特性及原子频标系统,将对激光功率的直接测量转变成对原子跃迁频率的测量,是原子光谱技术与光功率测量的结合,与现有的方法相比,具有原理上的创新。现有的测量方法可达到的测量精度受限,报道的最优值在10‑4量级,不能满足日益增长的精密测量需求。本发明提高了测量精度,理论上可提高1~2个量级甚至更多,达到10‑5至10‑6量级。将提高对激光功率的测量能力、提高光学计量能力,可促进激光计量行业的发展。

    电场探测量子组件和制备方法以及量子场强传感器

    公开(公告)号:CN110361604B

    公开(公告)日:2021-08-13

    申请号:CN201910664244.2

    申请日:2019-07-23

    IPC分类号: G01R29/08

    摘要: 本发明公开一种电场探测量子组件和制备方法以及量子场强传感器。电场探测量子组件的一种实施方式包括:第一直波导(110)、第二直波导(120)、环形波导(200)、第一光纤耦合接头(410)和第二光纤耦合接头(420);第一直波导(110)和第二直波导(120)分别与环形波导(200)的相互平行的两条切线重合,第一直波导(110)和第二直波导(120)分别与环形波导(200)在切点处相通,环形波导(200)包括两个分别与两条切线等距的金属气室(300),金属气室(300)内封存有碱金属蒸汽,第一光纤耦合接头(410)与第一直波导(110)的一个端口连接,第二光纤耦合接头(420)与第二直波导(120)的一个端口连接。本发明的电场探测量子组件采用光纤接口,体积小易调节。

    一种非厄米系统自旋压缩态的制备方法

    公开(公告)号:CN112994691A

    公开(公告)日:2021-06-18

    申请号:CN202110201380.5

    申请日:2021-02-23

    IPC分类号: H03L7/26

    摘要: 本发明公开一种非厄米系统自旋压缩态的制备方法,包括:提供一非厄米系统,所述非厄米系统具有其原子自旋态依赖于原子相互作用的能级结构;向所述非厄米系统施加囚禁势场,使原子被束缚于周期性的囚禁势阱中,以得到原子的双占据态;通过光缔合将原子从双占据态变到分子态,记录来自所述囚禁势阱的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数最小时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实现简单,不仅未破坏自旋压缩态,反而维持了自旋压缩效应稳定,具有反直觉的物理效应,能够应用于光学原子频标中,突破量子系统的测量极限。

    一种用于微波场强探测的微型探头,制作方法及应用

    公开(公告)号:CN112730991A

    公开(公告)日:2021-04-30

    申请号:CN202011469432.9

    申请日:2020-12-14

    IPC分类号: G01R29/08 B81C3/00

    摘要: 本发明公开一种用于微波场强探测的微型探头,制作方法及应用,包括:将第一玻璃片晶圆置于中间,第一硅片晶圆与第二硅片晶圆分别置于第一玻璃片的上表面和下表面,键合形成硅‑玻璃‑硅晶圆;将键合好的硅‑玻璃‑硅晶圆进行打孔,按照原子气室的尺寸设计晶圆上孔的数目、尺寸及间距,形成原子气室晶圆;将原子气室晶圆作为上层,取第二玻璃片晶圆作为下层,进行键合,形成微型腔体;将工作物质或者工作物质的混合物填充于所述微型腔体的原子气室内,形成未密封机构;将第三玻璃片晶圆与上述未密封机构进行键合,形成密封机构;将所述密封机构的每一个原子气室切割下来,制作微型场强探头。本发明的优点是:实现简单,不受微波场频率的限制。

    一种锁模脉冲激光的产生装置及方法

    公开(公告)号:CN111129936B

    公开(公告)日:2021-04-02

    申请号:CN201911279781.1

    申请日:2019-12-13

    IPC分类号: H01S3/11

    摘要: 本发明公开了一种锁模脉冲激光的产生装置及方法,该装置包括:锁模脉冲激光器、游标谐振腔、第一光电探测器、频谱仪和锁相电路;所述锁模脉冲激光器,用于输出重复频率为frep的第一脉冲激光;所述游标谐振腔,用于基于所述第一脉冲激光输出第二脉冲激光和脉冲光信号;所述第一光电探测器,用于感测所述第二脉冲激光,以输出第一电信号;所述锁相电路,用于基于所述脉冲光信号以输出第二电信号;所述游标谐振腔,用于基于所述频谱仪根据所述第一电信号生成的谐波信号和所述第二电信号调节所述游标谐振腔的物理腔长,以使得所述游标谐振腔输出的第二脉冲激光为重复频率为m·frep的谐波脉冲激光;其中,m为正整数。

    光学平衡互相关的远距离锁模激光短期稳定性测量装置

    公开(公告)号:CN108872750B

    公开(公告)日:2021-04-02

    申请号:CN201810707613.7

    申请日:2018-07-02

    IPC分类号: G01R31/00 G01M11/02

    摘要: 本发明提供了一种基于光学平衡互相关的远距离锁模激光器短期稳定性测量装置,包括:对向共路传输的第一锁模激光器和第二锁模激光器,以及上位机;所述上位机对第一锁模激光器和第二锁模激光器时间抖动变化量进行分析,获得短期稳定性噪声功率频谱。本申请所述技术方案结合光学平衡互相关法与激光脉冲共光路双向对称传递配置,消除激光脉冲传播路径变化引入的误差,可实现远距离锁模激光器的高精度短期稳定性测试。

    一种频率测量装置及使用方法
    9.
    发明公开

    公开(公告)号:CN112557763A

    公开(公告)日:2021-03-26

    申请号:CN202011493990.9

    申请日:2020-12-17

    IPC分类号: G01R29/08

    摘要: 本发明公开一种频率测量装置及使用方法,包括:光电探测器,用于接收飞秒激光器产生的部分激光,提取其脉冲重复频率的谐波信号;参考微波频,用于输出参考信号;鉴相器,用于接收所述谐波信号与所述参考信号,进行鉴相处理后作为误差信号输出;腔长控制系统,用于接收所述误差信号,输出反馈控制信号控制飞秒激光器的腔长,以进行激光脉冲重复频率到参考频率源的锁定;透镜,用于聚焦输出的飞秒激光;光电导天线,用于接收聚焦输出的飞秒激光于光电导天线的间隙处产生太赫兹频率梳,使得飞秒激光激励光电导天线产生所述太赫兹频率梳的相应梳齿成分与待测频率信号在光电导天线中混频后产生射频信号,本发明可以大幅提高太赫兹频段频率测量的精度。

    一种新型微波源
    10.
    发明授权

    公开(公告)号:CN110718835B

    公开(公告)日:2021-03-26

    申请号:CN201910991619.6

    申请日:2019-10-18

    IPC分类号: H01S1/02 H01S1/00

    摘要: 本发明公开一种微波源,包括半导体激光器、光电调制器、第一光耦合器、第一偏振控制器、第二偏振控制器、第二光耦合器、谐振腔模块、光探测器、滤波器、定向耦合器;所述半导体激光器、光电调制器和第一光耦合器沿着光路依次连接;第一光耦合器的一个输出端连接第一偏振控制器的输入端;第一光耦合器的另一个输出端连接第二偏振控制器的输入端;第一偏振控制器的输出端连接第二光耦合器的一个输入端;第二偏振控制器的输出端连接第二光耦合器的另一个输入端;第二光耦合器、谐振腔模块、光探测器、滤波器和定向耦合器依次连接;定向光耦合器与所述光电调制器连接;该发明能够获得极低的相位噪声,且杂散波抑制水平好,成本较低,光路调节较为简单。