-
公开(公告)号:CN114969272B
公开(公告)日:2024-07-02
申请号:CN202210743639.3
申请日:2022-06-27
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种在API知识图谱上基于Q学习的API序列搜索方法,首先,设计了API本体结构,并从API文档与开源软件项目中抽取API知识用于构建API知识图谱。其次,通过Word2Vec词嵌入方法以及TransE表示学习方法生成强化学习的状态表示。再次,基于DQN方法,给出了基于强化学习的API序列搜索模型的训练算法。最后,基于训练好的强化学习模型,实现API序列搜索。本发明将API使用序列搜索任务转化为基于API知识图谱的路径搜索任务,能更好地保证搜索到的API序列的合法性。本发明采用强化学习实现API使用序列搜索,其独特的探索机制能探索更丰富的API调用方式,从而增强模型的泛化能力。
-
公开(公告)号:CN116301824A
公开(公告)日:2023-06-23
申请号:CN202310131203.3
申请日:2023-02-17
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种文档指导的API序列搜索方法,所示方法包括如下步骤:步骤1:通过挖掘API文档仓库获取API集合以及API文档字典;步骤2:通过挖掘代码仓库构建数据集以及用于搜索的API使用序列数据库;步骤3:对原始数据进行预处理,并将其转化成能被深度学习模型处理的特征向量;步骤4:构建网络模型;步骤5:训练网络模型,并使用训练好的网络模型实现API使用序列搜索。本发明通过将API文档作为模型训练的指导信息,辅助实现跨模态注意力与跨模态相似度计算,能够缓解功能描述和API使用序列之间的语义鸿沟问题,从而提高搜索的准确率。
-
公开(公告)号:CN119475345A
公开(公告)日:2025-02-18
申请号:CN202411523678.8
申请日:2024-10-30
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于融合特征提示调优的语句级代码漏洞检测方法,首先利用静态分析工具解析源代码,利用程序切片技术生成切片代码段;随后,将语句级别的硬提示和软提示相结合,形成融合特征提示;之后,融合切片特征和语句特征,将这些特征嵌入模型中;最后,利用融合特征提示调优和预训练模型实现语句级别的漏洞检测。该方法根据漏洞语句的特征设计提示模板,能够充分利用预训练知识,学习漏洞代码的结构和属性信息,使模型能够更准确地区分漏洞语句和非漏洞语句,减少误报的可能性。此外,该方法可以充分利用预训练模型对上下文的理解能力,捕捉代码中细微的语法和语义信息。
-
公开(公告)号:CN115048491B
公开(公告)日:2024-09-06
申请号:CN202210693666.4
申请日:2022-06-18
Applicant: 哈尔滨工业大学
IPC: G06F16/33 , G06F8/41 , G06F40/30 , G06F17/18 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/0475 , G06N3/084
Abstract: 本发明公开了一种在异构语义空间中基于假设检验的软件跨模态检索方法,所述方法使用分布生成网络将文本投影到分布空间中的CFP相关分布;将代码表示为控制流图,并抽取其中所有的路径;利用样本生成网络将CFP映射为样本空间中的CFP样本向量,此时代码被表示为一个CFP样本向量集合;使用假设检验计算CFP样本向量集合对CFP相关分布的服从程度作为二者的匹配分数,并用于实现代码检索文本或文本检索代码形式的跨模态检索任务。本发明首次提出将代码和文本投影到异构语义空间中进行表示学习,即将文本投影到CFP相关分布空间并将代码投影到CFP样本空间,能够准确表征文本和代码各自的独特语义,提高跨模态检索的准确性。
-
公开(公告)号:CN115859307A
公开(公告)日:2023-03-28
申请号:CN202211678532.1
申请日:2022-12-26
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于树型注意力和加权图匹配的相似漏洞检测方法,首先,分别为目标函数、漏洞函数和补丁函数生成FCG、vSCG、pSCG。其次,利用语句节点嵌入网络分别提取FCG、vSCG和pSCG语句节点的语义和语法信息。接着,利用图神经网络和加权图匹配方法构成的图匹配模型,学习并计算FCG和vSCG之间以及FCG和pSCG之间的相似度,然后利用计算的三元组损失函数调整网络参数,训练检测模型。最后,利用训练好的模型检测软件中的相似漏洞。本发明可以在捕获代码中与漏洞相关的语法和语义特征的同时,有效利用补丁信息区分仅有细微差异的漏洞和补丁函数,从而提高相似漏洞检测的准确率。
-
公开(公告)号:CN115577362A
公开(公告)日:2023-01-06
申请号:CN202211105496.X
申请日:2022-09-09
Applicant: 哈尔滨工业大学
IPC: G06F21/57 , G06F18/25 , G06F18/213
Abstract: 本发明公开了一种基于源代码和汇编代码跨模态特征增强的漏洞检测方法,所述方法从源代码中提取控制依赖和数据依赖相关的语法语义特征,从汇编代码中提取内存操作相关的语法语义特征,然后使用高级语言程序源代码与其语句对齐的汇编代码输入到跨模态特征增强和融合的双模态表示学习模型进行软件漏洞检测。该方法能够对高级语言源代码和汇编代码两种程序模态进行表示学习,利用源代码和汇编代码之间的语句对齐关系,分别在源代码模态和汇编代码模态提取漏洞相关的语义特征,并使用不同的深度学习网络和交叉注意力机制学习二者之间的语义关联性,充分利用两种模态程序的特征互补性进行特征级融合,从而提升软件漏洞检测的准确性。
-
公开(公告)号:CN112699377A
公开(公告)日:2021-04-23
申请号:CN202011613496.1
申请日:2020-12-30
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于切片属性图表示学习的函数级代码漏洞检测方法,首先引入新的切片准则,并提出切片属性图的概念,基于切片准则和程序切片技术生成代码的切片属性图,提取与漏洞候选关键点有依赖关系的图结构信息、节点属性信息和代码上下文信息;然后,利用关系图卷积神经网络并结合基于节点和子图的双重注意力机制,对切片属性图进行表示学习,以学习更全面、更准确的漏洞模式;最后对各个切片属性图的漏洞识别结果进行融合实现函数级别的漏洞检测,并确定漏洞候选语句的集合以及与漏洞相关联的语法要素。该方法能覆盖更多的漏洞候选关键点,充分学习和表示漏洞相关的结构、属性和上下文信息,提高漏洞检测的准确率。
-
-
-
-
-
-