-
公开(公告)号:CN113075884A
公开(公告)日:2021-07-06
申请号:CN202110334301.8
申请日:2021-03-29
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明提供基于自适应遗传‑最小二乘互联预测系统的推力分配方法,步骤1根据船舶推进器位置及坐标系确定推力分配的数学模;步骤2建立最优方向预测模型,提出一种精英自适应遗传‑蝙蝠算法,通过获取上一时刻的最优推力预测值对当前时刻的最优方向进行预测;步骤3建立最优推力预测模型,通过获取上一时刻的最优方位角预测值采用最小二乘法对当前时刻的最优推力进行预测;步骤4形成最优方位角与最优推力相关联的预测系统,提出一种新的船舶推力分配优化方法,即预测系统将最优预测值及其导数送入推力分配控制器作为最优解搜索的起点和最优搜索方向的优化策略。
-
公开(公告)号:CN110145541B
公开(公告)日:2020-11-03
申请号:CN201910405435.7
申请日:2019-05-16
Applicant: 哈尔滨工程大学
IPC: F16C32/04
Abstract: 本发明提供一种基于相位稳定的磁悬浮轴承转子不平衡运动控制方法,步骤S1:建立磁悬浮轴承转子系统坐标系,以磁悬浮径向建立x,y轴,轴向为z轴;步骤S2:建立磁悬浮轴承转子径向四自由度运动学模型。步骤S3:根据轴承外观,形状确定位置传感器个数,位置.建立位移传感器模型;步骤S4:建立功率放大器模型;步骤S5:建立磁悬浮转子动力学模型;步骤S6:利用相位稳定控制的方法抑制转子的不平衡振动。本发明提出相位稳定的控制方法,有效解决了转子在转动过程中产生的不平衡振动对控制器的影响。本发明提出相位稳定的控制方法,有效解决了传统上自动平衡系统和相变峰值增益在高速和低速来回切换的影响。
-
公开(公告)号:CN111624996A
公开(公告)日:2020-09-04
申请号:CN202010396066.2
申请日:2020-05-12
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明涉及一种基于博弈论的多无人艇非完全信息围捕方法,属于多无人艇围捕领域。本发明包括:步骤1:构建围捕地图环境;步骤2:建立多无人艇围捕问题数学模型;步骤3:构建博弈围捕模型;步骤4:求解单步博弈均衡;步骤5:设计单步博弈扩展算法。本发明能够实现非完全信息时的有效围捕,对逃跑艇和围捕艇运动决策的约束及自信程度个性的赋予更加贴合实际,合理任务分段也提高了围捕效率。
-
公开(公告)号:CN111580518A
公开(公告)日:2020-08-25
申请号:CN202010396241.8
申请日:2020-05-12
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明涉及无人艇自主航行领域,特别指一种基于改进果蝇优化和动态窗口法的无人艇分层避障方法。本发明包括:步骤S1:建立基于电子海图的无人艇海上航行地理环境模型;步骤S2:采用改进的果蝇优化算法完成全局最优路径规划;步骤S3:建立动态障碍物的环境模型;步骤S4:采用改进的动态窗口法躲避移动障碍物船只。本发明提供了一种基于判断条件的动态与静态避障模式相切换的避障方法,可以在航行时有效的躲避障碍物,避免算法陷入局部最优解,采用模糊控制方法对最优轨迹的权重参数进行动态控制,提高了轨迹预测的精度和效率。
-
公开(公告)号:CN110377036A
公开(公告)日:2019-10-25
申请号:CN201910615393.X
申请日:2019-07-09
Applicant: 哈尔滨工程大学
Abstract: 本发明属于船舶领域,公开了一种基于指令约束的无人水面艇航迹跟踪固定时间控制方法,包含如下步骤:步骤(1):采集当前无人水面艇的实际位置信息和实际艏向信息;步骤(2):将无人水面艇期望的位置信息与实际位置信息做差得到无人水面艇的位置误差信息,将无人水面艇期望的艏向信息与实际艏向信息做差得到无人水面艇的艏向误差信息,然后设计虚拟控制律;步骤(3):利用二阶指令滤波器对虚拟控制律进行约束;步骤(4):针对外界海洋环境的干扰力进行干扰观测器的设计;步骤(5):设计固定时间反步控制器,解算得到喷水推进器的推力及转矩信息实现无人水面艇的航迹跟踪控制。本发明保证了控制系统鲁棒性,抗未知时变干扰能力强。
-
公开(公告)号:CN101825019A
公开(公告)日:2010-09-08
申请号:CN201010153595.6
申请日:2010-04-23
Applicant: 哈尔滨工程大学
IPC: F02C9/00
Abstract: 本发明的目的在于提供船用全燃联合动力装置并车的控制方法。本发明分为以下步骤:(1)初始化,触摸屏设置标志位清零;(2)判断触摸屏设置标志位是否为1,如果触摸屏设置标志位为1,则进入参数配置流程、完成参数配置,然后进入运行状态监测流程、进行燃气轮机运行状态参数的采样;如果触摸屏设置标志位不为1,则直接进入运行状态监测流程、进行燃气轮机运行状态参数的采样;(3)进入控制流程,完成燃气轮机的并车运行和解列运行控制;(4)重复步骤(1)~(3)、进入下一个循环。本发明通用性好、拓展性强,不仅适合燃气轮机双机并车运行,还可以进行多机的并车运行模式。
-
公开(公告)号:CN113296499B
公开(公告)日:2022-10-28
申请号:CN202110405217.0
申请日:2021-04-15
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种基于加速度前馈的艏向最优极地FPSO锚泊动力定位控制方法。本发明目的在于利用加速度前馈对扰动进行补偿,提高系统状态估计精度,使FPSO保持期望艏向和位置。1、设计了一种根据锚泊缆最大张力和次大张力的基于来冰方向的最佳艏向计算方法。2、通过在状态观测器中增添加速度项,建立了FPSO锚泊动力定位系统加速度前馈观测器,能够有效抑制快变冰扰动对状态估计产生的影响。3、设计了一种加速度前馈与非线性模型预测控制结合的锚泊动力定位控制器,既保留了原系统的非线性特性又考虑了输入输出的约束问题,实现了位置和艏向的控制。
-
公开(公告)号:CN114879671A
公开(公告)日:2022-08-09
申请号:CN202210477463.1
申请日:2022-05-04
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于水面无人艇轨迹跟踪控制技术领域,具体涉及一种基于强化学习MPC的无人艇轨迹跟踪控制方法。本发明在无人艇的MPC轨迹跟踪控制器设计过程中,选用无人艇的运动学模型和操纵响应模型作为预测模型,根据无人艇轨迹跟踪任务需求构造控制性能指标函数,在MPC滚动优化过程中利用强化学习的DDPG算法构建性能指标函数的求解器,通过最小化性能指标函数求解出轨迹跟踪的最优控制序列,最终将每时刻控制序列的第一个控制量作用于无人艇系统上。本发明提高了轨迹跟踪控制的鲁棒性和抗干扰,同时具备自学习能力,适应于复杂的海况环境,相较于传统的MPC控制算法其自主性和实时性更强,跟踪误差更小。
-
公开(公告)号:CN110377034B
公开(公告)日:2022-05-17
申请号:CN201910613566.4
申请日:2019-07-09
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于船舶领域,公开了一种基于蜻蜓算法优化的水面船轨迹跟踪全局鲁棒滑模控制方法,包含如下步骤:步骤(1):建立船舶三自由度运动模型获取船舶的位置及艏向;步骤(2):利用非线性估计滤波器滤去波浪力中的一阶高频干扰力及测量噪声;步骤(3):设计基于全局鲁棒的轨迹跟踪滑模控制器;步骤(4):根据实际情况设计巴特沃斯低通滤波器;步骤(5):引入蜻蜓优化算法对轨迹跟踪滑模控制器中重要参数寻优;步骤(6):将轨迹跟踪滑模控制器、巴特沃斯低通滤波器及非线性估计滤波器与水面船构成闭环系统,输入期望轨迹。本发明保证了航迹跟踪误差的渐进收敛,解决了常规滑模控制趋近段的不鲁棒性,实现了全局快速稳定。
-
公开(公告)号:CN113296499A
公开(公告)日:2021-08-24
申请号:CN202110405217.0
申请日:2021-04-15
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种基于加速度前馈的艏向最优极地FPSO锚泊动力定位控制方法。本发明目的在于利用加速度前馈对扰动进行补偿,提高系统状态估计精度,使FPSO保持期望艏向和位置。1、设计了一种根据锚泊缆最大张力和次大张力的基于来冰方向的最佳艏向计算方法。2、通过在状态观测器中增添加速度项,建立了FPSO锚泊动力定位系统加速度前馈观测器,能够有效抑制快变冰扰动对状态估计产生的影响。3、设计了一种加速度前馈与非线性模型预测控制结合的锚泊动力定位控制器,既保留了原系统的非线性特性又考虑了输入输出的约束问题,实现了位置和艏向的控制。
-
-
-
-
-
-
-
-
-