一种基于双运动模型的主从式多AUV协同导航方法

    公开(公告)号:CN109974706B

    公开(公告)日:2021-05-11

    申请号:CN201910177062.2

    申请日:2019-03-08

    Abstract: 本发明属于水下航行器导航研究领域,具体涉及一种基于双运动模型的主从式多AUV协同导航方法,包括以下步骤:领航AUV与跟随AUV进行水声测距,同时领航AUV将自身位置和速度信息广播发送给跟随AUV;建立跟随AUV与领航AUV间的相对运动状态空间模型;通过CKF估计跟随AUV与领航AUV的速度分量差值;建立双领航模式的多AUV协同导航状态空间模型;本发明提出将AUV相对运动状态空间模型与双领航模式的多AUV协同导航状态空间模型相结合,保障了多AUV协同导航系统的协同定位性能;本发明跟随AUV不需装备惯性导航设备和DVL,从而降低AUV系统配置的复杂性且节约了跟随AUV的内部空间、减轻重量。

    一种基于收敛优化的分布式多速率粒子滤波算法

    公开(公告)号:CN112583380A

    公开(公告)日:2021-03-30

    申请号:CN202011481231.0

    申请日:2020-12-15

    Abstract: 本发明提供一种基于收敛优化的分布式多速率粒子滤波算法,步骤一:在无线传感器网络中的所有节点上运行局部粒子滤波器,并计算得出局部预测分布和局部滤波分布的均值与方差;步骤二:运行加权平均一致性算法,并对其收敛速率优化,得出后续滤波所需数据;步骤三:在无线传感器网络中的所有节点上运行融合粒子滤波器,输出全局状态估计结果。本发明在优化其收敛速率的同时,又将平均一致性滤波器改进为加权平均一致性滤波器,消除了无效节点带来的一致性误差,这将使估计精度也有所提升。并且,本发明的仿真实验背景设置为稀疏性与动态性并存的无线传感器网络系统,验证说明了分布式多速率收敛优化粒子滤波算法的扩展应用环境。

    一种基于鸽群优化的多无人机紧密编队控制方法

    公开(公告)号:CN111158395A

    公开(公告)日:2020-05-15

    申请号:CN202010031399.5

    申请日:2020-01-13

    Abstract: 本发明提供一种基于鸽群优化的多无人机紧密编队控制方法,通过分析长机翼尖涡流对僚机影响建立紧密编队条件下气动耦合效应的数学模型,输入长机控制指令和改进人工势场法获得多无人机紧密编队的理想状态。利用改进鸽群优化算法估计可使下一时刻僚机状态量最接近理想状态下的僚机控制量,从而完成编队任务。本发明意义在于提供了一种在紧密编队条件下的多无人机编队控制方案,收敛速度快,稳态精度高,具有较高的工程应用价值。

    基于声学测量网络的水下多AUV协同定位编队拓扑结构优化方法

    公开(公告)号:CN109656136A

    公开(公告)日:2019-04-19

    申请号:CN201811534141.6

    申请日:2018-12-14

    Abstract: 本发明属于声学测量领域,具体涉及一种基于声学测量网络的水下多AUV协同定位编队拓扑结构优化方法。本发明在多随从AUV情况下,考虑了声学测距误差与距离的相关性,具有更高的实用价值;针对位置信息的不确定性,根据相应的概率密度采用蒙特卡洛方法对可能分布区域内的编队构型进行优化设计;采用基于退火思想的步进递推的策略,不管主艇初始位置在何处,均可经过迭代步骤找到其最优位置布局;本发明引入Metropolis准则作为判断是否接受新解作为当前解的准则之一,可有效改善当局部最优解出现时迭代不再继续进行的情况;本发明的迭代过程产生新解邻域的大小与温度高低直接相关,增加最终结果的精确性。

    一种基于多水听器提高多AUV协同定位性能的方法

    公开(公告)号:CN109596128A

    公开(公告)日:2019-04-09

    申请号:CN201910033292.1

    申请日:2019-01-14

    Abstract: 本发明属于自主式水下航行领域,具体涉及一种基于多水听器提高多AUV协同定位性能的方法。该方法包括:在跟随AUV上配置多个水听器,设置水听器的位置并固定水听器;领航AUV与跟随AUV通过水听器进行水声测距,同时领航AUV将自身位置广播发送给跟随AUV;建立单领航AUV模式的协同定位系统状态空间模型;利用EKF滤波方法,对跟随AUV定位。通过设计多个水听器在跟随AUV上的位置,增加状态空间模型量测矩阵维数,系统的可观测性大大提高,有效降低了对单领航方案中的各AUV高机动性要求;减少了多AUV协同导航系统领航AUV数量,避免了由于设置多个领航AUV所需要配备的高精度惯性测量单元,降低成本;不涉及到多领航AUV时间同步的问题,容易实施,而且定位精度较高。

    一种基于惯性测量单元的大角度船体变形测量方法

    公开(公告)号:CN105300382B

    公开(公告)日:2018-07-24

    申请号:CN201510726810.X

    申请日:2015-10-30

    Abstract: 本发明提出基于惯性测量单元的大角度船体变形测量方法,同时采用CKF滤波方法,并能保证相对较高的精度。本发明包括:将两套惯性测量单元IMU1和IMU2分别安装在船体的中央位置和船首位置;建立变形角的非线性模型;推导两载体坐标系间的变换关系;确定IMU的误差模型;建立非线性状态方程;建立系统的观测方程;采用CKF算法进行时间更新与量测更新,对船体变形进行估计和监控。本发明建立了基于惯性测量匹配法的非线性模型,采用CKF滤波,其适用于非线性船体变形建模与测量,滤波精度要好于UKF。分析变形角参数设置不准确对估计的影响,并提出基于舰船姿态频谱分析的主频参数优化方法。

    一种船体侧滑速度误差判定补偿方法

    公开(公告)号:CN105180944B

    公开(公告)日:2017-12-19

    申请号:CN201510593932.6

    申请日:2015-09-17

    Abstract: 本发明公开了一种船体侧滑速度误差判定补偿方法。包括以下步骤,将组合导航系统的惯性单元固定安装于待测船上;使船作S型运动,在转弯过程中保持旋转速率不变,采集组合导航系统数据;将船转弯时记录的船体东向速度VE和北向速度VN利用姿态转换矩阵投影到载体系b系上,载体系上x轴速度Vx即为船体侧滑速度,载体系上y轴速度Vy即为船体艏艉向速度;通过对组合导航系统输出的航向角θ3进行差分可以确定其在转弯时的大小即为船体在转弯时的旋转速率r0,进而确定侧滑系数;待测船做实际航行,实时采集船体在转弯时的旋转速率r、横向加速度以及舵角δr,进行侧滑速度补偿。本发明减小电磁计程仪测速误差对惯性导航系统的影响,减小系统输出最大误差。

    断调平状态下平台惯导对准方法

    公开(公告)号:CN104330094B

    公开(公告)日:2017-02-15

    申请号:CN201410525302.0

    申请日:2014-10-08

    Abstract: 本发明的目的在于提供断调平状态下平台惯导对准方法,把子惯导进入断调平状态初始时刻的地球系凝固于惯性空间中,将子惯导进入断调平状态初始时刻的主惯导平台系凝固于惯性空间中,将平台台失准角分成两部分,一部分为主惯导平台系与主惯导平台惯性系之间的夹角,另一部分即是子惯导平台系与主惯导平台惯性系之间的夹角,通过实时更新地理系相对于地心惯性系的余弦矩阵,在地心惯性系上对主、子惯导建立速度匹配误差模型,通过卡尔曼滤波得到子惯导平台与主惯导平台惯性系之间的夹角,再利用上述余弦矩阵,得到主、子惯导平台之间的失准角。本发明解决了传统速度匹配方法无法对Z轴失准角进行估计的问题,提高了Z轴方向上失准角的可观测度。

Patent Agency Ranking