一种基于最小间隙阵列的鲁棒动态测向方法

    公开(公告)号:CN107238812B

    公开(公告)日:2020-04-07

    申请号:CN201710342910.1

    申请日:2017-05-16

    Abstract: 本发明提供的是一种基于最小间隙阵列的鲁棒动态测向方法。一,设置最小间隙阵列;二,初始化搜索空间;三,所有成员在演化前被定义为发现者和游荡者,分别根据发现者演化规则和游荡者演化规则演进搜索步长和量子位置;四,计算第i个成员的适应度,成员使用贪婪策略选取量子位置;将适应度函数最大值对应的量子位置记为全局最优量子位置;五,判断是否达到最大迭代次数;六,进行第k+1次快拍采样;七,是否达到最大快拍采样数;八,将每个快拍采样获得的全局最优量子位置都映射为全局最优位置即需要跟踪的动态目标方向值。本发明基于最小间隙阵列和加权范数协方差更新规则,设计了量子群搜索机制的动态测向方法,获得一种鲁棒动态测向方法。

    无线能量采集认知无线电的最优中继协作传输方法

    公开(公告)号:CN106603140B

    公开(公告)日:2019-07-16

    申请号:CN201611135662.5

    申请日:2016-12-12

    Abstract: 本发明提供的是一种无线能量采集认知无线电的最优中继协作传输方法。首先,建立无线能量采集认知无线电的最优中继模型;然后,根据多种群协作量子粒子群搜索方法更新量子粒子的量子位置和速度,进而实现无线能量采集认知无线电的最优中继传输;最后,输出种群的全局最优量子位置,将其映射为全局最优位置,为无线能量采集认知无线的最优信能协同中继传输方案。本发明结合多种群协作量子粒子群搜索机制和认知无线电无线能量采集相关技术,设计了一种无线能量采集认知无线电的最优中继协作传输方法。其能够在满足主用户能量采集和传输的条件下,实现从用户的能量采集和传输。

    基于量子鸽群机制的无人机任务分配方法

    公开(公告)号:CN108985549A

    公开(公告)日:2018-12-11

    申请号:CN201810545547.8

    申请日:2018-05-25

    Abstract: 本发明公开了基于量子鸽群机制的无人机任务分配方法,属于无人机资源分配领域。步骤为:建立无人机分阶段任务分配模型;确定需要执行的任务,初始化量子鸽群;计算每只量子鸽子的适应度值,选出局部最优位置和全局最优位置;更新量子旋转角矢量,来更新每只量子鸽子的量子速度,得到量子鸽子的位置;对每只量子鸽子进行适应度评价;确定局部最优位置和全局最优位置;判断是否达到最大迭代次数;输出全局最优位置;判断任务分配是否完成;获得任务分配方案。本发明实现了以较少的时间代价获取更高的收敛精度、更快的收敛速度和更合理的任务分配方案,能够有效解决对无人机多约束的要求,得到更加合理的无人机任务分配方案。

    基于量子乌鸦群搜索机制的无人机群任务分配方法

    公开(公告)号:CN108549402A

    公开(公告)日:2018-09-18

    申请号:CN201810224721.9

    申请日:2018-03-19

    CPC classification number: G05D1/104

    Abstract: 本发明涉及一种基于量子乌鸦群搜索机制的无人机群任务分配方法,包括:建立从多个起点到多个任务的无人机群任务分配模型,包括无人机型号数、起点终点和分配模型;初始化量子乌鸦群;根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置;更新每只量子乌鸦的量子位置和位置;根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置,若达到最大迭代代数则输出全局最优食物位置,映射为任务分配矩阵。本发明解决了离散多约束目标函数求解问题,并设计离散量子乌鸦算法作为演进策略,具有收敛速度快,收敛精度高的优点。

    一种基于布谷鸟和声搜索机制的IIR数字滤波器生成方法

    公开(公告)号:CN106447026A

    公开(公告)日:2017-02-22

    申请号:CN201610821170.5

    申请日:2016-09-13

    CPC classification number: G06N3/006 H03H17/0202

    Abstract: 本发明提供的一种基于布谷鸟和声搜索机制的IIR数字滤波器生成方法。进行初始化,对布谷鸟和声记忆库中每个布谷鸟和声进行适应度值计算,初始化信仰空间的形势知识和规范知识;从布谷鸟和声记忆库中随机选取一个布谷鸟和声音调,若rand1 PAR,则更新布谷鸟和声音调;若新布谷鸟和声的适应度值小于布谷鸟和声记忆库中最大布谷鸟和声的适应度值,则进行替换;随机对布谷鸟和声记忆库中布谷鸟和声进行改变,计算适应度值并选择适应度值较小的布谷鸟和声,更新信仰空间的形势知识和规范知识;循环迭代输出形势知识中的最优布谷鸟和声,即为IIR数字滤波器的参数。具有收敛速度快和性能好的显著特点。

    基于量子记忆优化机制的高光谱遥感图像波段选择方法

    公开(公告)号:CN108509840B

    公开(公告)日:2021-10-01

    申请号:CN201810106446.0

    申请日:2018-02-02

    Abstract: 本发明涉及一种基于量子记忆优化机制的高光谱遥感图像波段选择方法,首先计算高光谱遥感图像所有波段的相关性向量或者相关性矩阵;对相关性向量或者相关性矩阵的每个元素求其倒数,并分别命名其为独立性向量或者独立性矩阵;依据所有波段的独立性向量或者独立性矩阵设定波段子空间独立性容量阈值,进行波段子空间划分,在每个波段子空间中选择一个波段,或从每个波段子空间内按比例选择波段,确定所选波段子集的维数;然后通过设计模拟人类认知过程的量子记忆优化机制并结合量子旋转门实现对最优波段子集的优化搜寻。本发明不仅适用于多维优化问题,同时也适用于高维优化问题,与已有算法相比分类精度高,运行时间短,更具有工程应用和推广价值。

    一种绿色认知无线电的无线能量采集和分配方法

    公开(公告)号:CN106788810B

    公开(公告)日:2020-06-16

    申请号:CN201611135694.5

    申请日:2016-12-12

    Abstract: 本发明提供的是一种绿色认知无线电的无线能量采集和分配方法。首先,建立绿色认知无线电无线能量采集和分配模型。其次,设计量子灰狼搜索机制,通过量子灰狼搜索方法,对量子灰狼的量子位置进行更新。使用量子灰狼搜索方法实现绿色认知无线电的无线能量采集和分配。然后,根据所得到的全局最优量子位置,并将其映射为位置,作为认知无线电无线能量采集和分配的方案。本发明在满足系统所需吞吐量的条件下,寻求系统的最小能量消耗,通过无线能量传输、采集和分配实现认知无线电系统的自供能,进而无需额外的能源供应给装置,并可以在一定程度上储存能量。

    基于多目标量子萤火虫搜索机制的频谱感知方法

    公开(公告)号:CN106257849B

    公开(公告)日:2019-05-17

    申请号:CN201610821207.4

    申请日:2016-09-13

    Abstract: 本发明提供的是一种基于多目标量子萤火虫搜索机制的频谱感知方法。建立多目标频谱感知模型,确定搜索方法的参数。确定需要求解的多目标适应度函数形式。种群中的量子萤火虫的量子位置根据其适应度值进行非支配量子位置排序,非支配等级为1的量子萤火虫的量子位置放入精英量子位置集中。使用量子编码机制和量子演化行为更新量子萤火虫的量子位置,选择非支配量子位置,更新精英量子位置集。根据最终的Pareto前端量子位置集,认知无线电系统根据对最大化检测概率和最小化虚警概率的不同的需要选取相应的量子位置。本发明可解决多目标频谱感知这个技术难题,能应用在现有认知无线电频谱感知方法所不能应用的一些场景。

    基于正交匹配稀疏重构的相干信源动态DOA追踪方法

    公开(公告)号:CN106443621B

    公开(公告)日:2018-08-17

    申请号:CN201610821208.9

    申请日:2016-09-13

    Abstract: 本发明提供的是一种冲击噪声条件的基于正交匹配稀疏重构的相干信源动态DOA追踪方法。针对的是冲击噪声条件下相干信源动态DOA估计问题。在基于去冲击预处理和秩‑1更新处理动态数据的基础上,稀疏重构方案克服了冲击噪声条件下的波达角度估计无法利用二阶及二阶以上统计量求解的问题。通过利用非相干测量矩阵稀疏重构的思想,所提方案可以在不进行解相干预处理的前提下直接求解相干信号的动态波达角度,并能够在低快拍采样条件下实现对动态目标的准确跟踪,适用于强、弱冲击噪声环境下的动态DOA估计问题,避免了复杂计算量。结果表明本发明跟踪效果良好,可在强冲击噪声、低信噪比、低快拍采样的条件下实现相干信源的快速跟踪、准确重构。

    基于量子乌鸦群搜索机制的无人机群任务分配方法

    公开(公告)号:CN108549402B

    公开(公告)日:2020-11-10

    申请号:CN201810224721.9

    申请日:2018-03-19

    Abstract: 本发明涉及一种基于量子乌鸦群搜索机制的无人机群任务分配方法,包括:建立从多个起点到多个任务的无人机群任务分配模型,包括无人机型号数、起点终点和分配模型;初始化量子乌鸦群;根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置;更新每只量子乌鸦的量子位置和位置;根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置,若达到最大迭代代数则输出全局最优食物位置,映射为任务分配矩阵。本发明解决了离散多约束目标函数求解问题,并设计离散量子乌鸦算法作为演进策略,具有收敛速度快,收敛精度高的优点。

Patent Agency Ranking