-
公开(公告)号:CN107255479A
公开(公告)日:2017-10-17
申请号:CN201710357447.8
申请日:2017-05-19
Applicant: 哈尔滨工程大学
IPC: G01C21/18
CPC classification number: G01C21/18
Abstract: 本发明提供一种四冗余型的捷联惯导系统IMU台体,包括:四面体框架、三个L型支撑脚;其特征在于,四面体框架包括三个斜面和一个底面;四面体框架的每个平面均有三个安装基准脚,三个安装基准脚的中心构成等边三角形,三个安装基准脚的上表面共面且与所在的四面体框架平面平行;每个安装基准脚有两个螺纹孔,两个螺纹孔的中心轴线均垂直于安装平面且关于安装基准脚中心对称分布;四面体框架关于三条梁对称,为空心结构;L型支撑脚有三角槽,三角槽中心攻有螺纹;L型支撑脚底面有两个螺纹孔。本发明安装简易,惯性测量单元安装误差小,易于散热,台体质量和体积小。
-
公开(公告)号:CN106338283A
公开(公告)日:2017-01-18
申请号:CN201610854299.6
申请日:2016-09-27
Applicant: 哈尔滨工程大学
CPC classification number: G01C19/72 , G01C19/721 , G01C25/00
Abstract: 本发明的目的在于提供一种高精度干涉式光纤陀螺仪温漂误差模型优化方法,通过构造光纤环温度乘积量T×ΔT,与光纤环温度T和光纤环温度变化量ΔT一起共同作为干涉式光纤陀螺仪温漂误差基础模型的优化输入量,采用RBF-ANN实现干涉式光纤陀螺仪温漂误差优化模型,通过升降温试验获取温漂误差实测值,和由优化模型估计得到的温漂误差估计值,通过对比温漂误差实测值和估计值的对比验证优化后模型的精度。本发明所采用的优化输入量更完整,对温漂误差模型的描述更精确,提高了干涉式光纤陀螺仪温漂误差估计的准确性、实时性和通用性,保证了干涉式光纤陀螺仪输出数据的稳定性和可靠性。
-
公开(公告)号:CN102998690B
公开(公告)日:2014-04-16
申请号:CN201210487249.0
申请日:2012-11-26
Applicant: 哈尔滨工程大学
IPC: G01S19/54
Abstract: 本发明提供一种基于GPS载波双差方程的姿态角直接求解方法。主要包括载波双差方程建立、将载体姿态信息引入载波双差方程中及利用非线性最小二乘解算姿态角。本发明本提供一种能够有效减少或消除短基线公共误差,实现高精度解算;将姿态角信息引入双差方程中,能够实现姿态角的直接解算,极大的减小了中间估计误差;运用非线性最小二乘的方法估计姿态角,提高系统解算速度,完成姿态信息的实时性解算,使本发明更加适合实时性载体姿态测量。
-
公开(公告)号:CN107421534B
公开(公告)日:2020-02-14
申请号:CN201710280247.7
申请日:2017-04-26
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种冗余式捷联惯导系统多故障隔离方法。该方法首先采集冗余式惯性导航系统惯性器件输出数据,利用广义似然比方法进行故障检测,检测得到冗余式捷联惯导系统发生故障时,利用线性估计方法估计得到故障时刻惯性器件输出的预测值,最后比较惯性器件预测值与输出值差值,定位故障惯性器件,并隔离故障惯性器件。该方法将广义似然比方法与线性估计方法相结合,充分利用广义似然比方法灵敏度高、便于实现,以及线性估计方法计算量小、准确性高等特点,在冗余式惯性导航系统多个惯性器件同时发生故障时,及时并准确隔离故障惯性器件,保障惯导系统的可靠性。
-
公开(公告)号:CN106643728A
公开(公告)日:2017-05-10
申请号:CN201611164792.1
申请日:2016-12-16
Applicant: 哈尔滨工程大学
IPC: G01C21/20
CPC classification number: G01C21/203
Abstract: 本发明提供的是一种基于自适应频率估计的船舶升沉运动信息估计方法。本发明设计了自适应频率估计算法对输入信号的频率进行实时估计,利用估计得到的信号频率计算出超前相角和超前时间,再对输出信息的时间超前量进行自适应延时校正。本发明设计的自适应频率估计算法,能够实现对无规则、不确定的船舶升沉运动信号频率的精确估计;设计的基于频率估计的延时校正算法,能够解决传统方法应用高通滤波器的输出延迟问题,实现对升沉信息的实时校正;升沉信息计算方法仅需利用船舶自身的捷联惯导系统信息,无需引入外部设备和其他信息辅助,方法的自主性强。
-
公开(公告)号:CN106442241A
公开(公告)日:2017-02-22
申请号:CN201610810835.2
申请日:2016-09-08
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及环境空气质量监测领域,特别是一种基于GSM无线传输的空气PM2.5检测装置及其检测方法。一种基于GSM无线传输的PM2.5检测装置,包括PM2.5检测模块、单片机最小系统模块、GSM通信模块、手机显示终端四部分。基于GSM无线传输的PM2.5检测装置,查询当前空气PM2.5浓度值操作简便,只需要向装置中装有SIM卡的GSM通信模块发送查询短信息即能实现对空气PM2.5浓度值的全天时、远程查询,数据传递快速且准确。
-
公开(公告)号:CN105872276A
公开(公告)日:2016-08-17
申请号:CN201610168559.4
申请日:2016-03-23
Applicant: 哈尔滨工程大学
CPC classification number: H04M11/002 , G08B21/182 , H04M1/72569 , H04M11/04 , H04W4/14 , H04W4/18
Abstract: 本发明涉及环境温度查询领域,具体涉及一种基于拨打电话的温度快速查询装置及查询方法。基于拨打电话的温度快速查询装置,包括温度数据采集模块、温度数据处理模块、GSM通信模块、查询手机终端四部分,温度数据采集模块与温度数据处理模块相连,并将测量的温度电压信号传输至温度数据处理模块;温度数据处理模块通过串行接口与GSM通信模块相连,并对温度电压信号进行转换。基于拨打电话的高精度远程温度快速查询方法,查询操作简便,只需要拨打电话即能实现对环境温度的全天时、远程查询,数据传递快速且准确。
-
公开(公告)号:CN105783943A
公开(公告)日:2016-07-20
申请号:CN201610265830.6
申请日:2016-04-26
Applicant: 哈尔滨工程大学
IPC: G01C25/00
CPC classification number: G01C25/005
Abstract: 本发明公开了一种基于无迹卡尔曼滤波的极区环境下舰船大方位失准角传递对准方法。步骤一:完成子惯导系统的启动、预热准备,子惯导系统利用主惯导系统发送的导航参数完成一次装订;步骤二:子惯导系统进行惯导解算,同步采集主、子惯导系统在格网系下输出的速度和姿态信息,得到速度和姿态误差来构成量测量Z;步骤三:依据格网系下的导航力学编排,结合格网导航误差方程,采用“速度+姿态”的匹配方式,建立格网系下的系统状态方程和量测方程;步骤四:进行无迹卡尔曼滤波解算,估算出子惯导系统的姿态失准角、速度的状态估算值,完成传递对准。本发明解决了极区环境下大方位失准角的传递对准问题,提高了极区的传递对准精度和适用性。
-
公开(公告)号:CN105588565A
公开(公告)日:2016-05-18
申请号:CN201610130787.2
申请日:2016-03-08
Applicant: 哈尔滨工程大学
IPC: G01C21/16
CPC classification number: G01C21/16
Abstract: 本发明公开了一种基于冗余配置的捷联惯导系统双轴旋转调制方法。针对构成的四陀螺冗余系统特别设计了8次序的对称双轴旋转调制方案,根据冗余配置和系统旋转方案计算等效在载体系上的陀螺仪测量值,将其带入系统进行导航解算,实时、连续地输出载体姿态、速度及位置导航参数。本发明不仅能够提高捷联惯导系统的可靠性,保证系统在单个陀螺仪发生故障时有效工作,而且还能够在不引入任何外部信息的条件下,消除由陀螺仪漂移产生的导航误差,更好地保证系统的精度性能。本发明实现了导航系统更为全面的性能提升,在很大程度上可以保证系统长时间的有效工作,具有很高的工程应用价值。
-
公开(公告)号:CN104049269A
公开(公告)日:2014-09-17
申请号:CN201410290842.5
申请日:2014-06-25
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于激光测距和MEMS/GPS组合导航系统的目标导航测绘方法。根据MEMS/GPS组合导航系统测出观测点的位置、姿态,通过LDS测出观测点距目标的距离,采用该目标导航测绘算法进行解算,得出目标载体的位置、姿态、斜距及高程差等信息;并通过姿态校正算法,提高MEMS/GPS组合导航系统的姿态精度,进而提高目标定位的精度。该方法可有效实现对动态目标的导航测绘,且不需在目标载体上安装导航设备。
-
-
-
-
-
-
-
-
-