-
公开(公告)号:CN106910668B
公开(公告)日:2018-07-03
申请号:CN201710225589.9
申请日:2017-04-07
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种真空定量自动进样系统及其使用方法,包括一个蠕动泵,一个定量管,两个三通电磁阀和一个两通电磁阀;两通电磁阀一端与真空系统相连,另一端与三通电磁阀相连。上样时蠕动泵在三通电磁阀的配合下将溶液输送到定量管中,并充满定量管,多余样品排到废液池;进样时两通电磁阀打开,三通电磁阀管路切换,定量管中的液体在负压差的作用下输送到真空腔体内。本发明结构简单,使用方便,能够实现样品定量进样。可以应用于质谱仪器中直接进样过程。
-
公开(公告)号:CN108980426B
公开(公告)日:2023-06-02
申请号:CN201811022209.2
申请日:2018-09-04
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: F16K17/04 , C02F1/44 , C02F1/20 , C02F103/20
Abstract: 本发明属于气液分离领域,具体涉及一种插装式气液分离安全阀。所述安全阀包含包括安全阀固定座和安全阀插装块,在所述安全阀插装块的内部安装阀芯,阀芯的外壳壁上设置小管径通气管道,在阀芯靠近出气口的一端设置密封部,所述安全阀插装块内设有与所述密封部配合实现密封的密封座,所述小管径通气管道的气体出口设置于阀芯密封部的下部外侧;通过与阀芯连接的限位装置能够实现所述阀芯沿着轴向运动。本发明所提供的安全阀在分离膜破裂瞬间,阀芯两侧压差剧增,推动阀芯运动实现密封,安全阀闭合,避免了分离膜破裂造成的水汽成分进入到真空设备而造成损害。
-
公开(公告)号:CN111289711A
公开(公告)日:2020-06-16
申请号:CN202010141203.8
申请日:2020-03-04
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种水质生物毒性在线监测装置,包括六通道选择阀,所述六通道选择阀中的任意四个侧通道分别通过特氟龙样品管与直囊式过滤器、冷藏菌液仓、温度平衡反应单元和缓冲液试剂瓶连接,其公共通道与注射泵连接;所述温度平衡反应单元与光电检测单元连接;所述温度平衡反应单元包括暗室和安装在暗室中的检测池和光电倍增管,光电倍增管安装在检测池下方,与数据处理系统连接。其优点在于,将发光细菌检测法与流动注射相结合,减小了检测系统的体积和试剂用量、提高了监测效率。
-
公开(公告)号:CN109990913A
公开(公告)日:2019-07-09
申请号:CN201910321128.0
申请日:2019-04-19
Applicant: 山东省海洋仪器仪表科技中心 , 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种尾翼可调式海底沉积物温度探测装置,包括尾翼段、控制段和探针段;尾翼段包括上端盖、位于上端盖外部的尾翼、位于上端盖内部控制尾翼运动的尾翼电机和伸出上端盖顶部的上通信缆;控制段包括密封舱和位于密封舱外部的浮体,密封舱内部设有控制主板、电机驱动板、通信主板和电池组;探针段包括下端盖、伸出下端盖的探针,以及位于探针内部的下通信缆;密封舱的上下两端分别连接上端盖和下端盖,本发明所公开的温度探测装置通过控制尾翼可以有效的矫正探针下沉的姿态,同时可以计算出惯入点位置和整个灌入过程的运动参数,可以更加有效的测得海底更深层次的地热温度梯度。
-
公开(公告)号:CN105319171B
公开(公告)日:2018-12-25
申请号:CN201510790255.7
申请日:2015-11-17
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明公开了一种亚硝酸盐或硝酸盐含量的检测装置及检测方法,包括蠕动泵、流动比色皿、光源、光接收器、镉圈和7个三通电磁阀,通过控制蠕动泵和多路三通电磁阀选择性地进样、环流、显色、还原和排废,从而缩短了检测装置的流路,集成度高,体积小,适合在线分析。通过采用环流设计,反应效率大大提高,整个环路里的反应生成物浓度均一,可以多次测量取平均值,平行性和稳定性大大提高。此外,本发明采用镉圈作为还原部件,让待测的样品溶液在镉圈中按照一定的速度流过,既提高了还原效率又避免了反复填充的工作,操作方便快捷,同时避免了有毒有害试剂的使用。
-
公开(公告)号:CN108693242A
公开(公告)日:2018-10-23
申请号:CN201810685506.9
申请日:2018-06-28
Applicant: 山东省科学院海洋仪器仪表研究所
CPC classification number: G01N27/62 , B01D53/228 , G01N1/34
Abstract: 本发明属于水体监测术领域,具体涉及一种质谱在线水气分离装置。一种质谱在线水气分离装置,是由水体进样模块、水气分离模块及质谱保护模块三部分构成;所述的水体进样模块与水气分离模块连接;水气分离模块与质谱保护模块连接;质谱保护模块由不锈钢球、密封圈、弹簧及不锈钢管组成;不锈钢管的一端连接水气分离模块,另一端连接质谱仪;不锈钢球设置在不锈钢管内,其质谱端通过弹簧固定于不锈钢管内壁,不锈钢管靠近质谱端设有密封圈。本发明的质谱水气分离装置,主要适用于水体中气体在线监测,在质谱仪真空负压下实现在线水气分离,通过质谱保护模块后进入质谱仪实现在线监测。本发明的质谱水气分离装置适用于地表水及海水的在线水气预处理。
-
公开(公告)号:CN104733280A
公开(公告)日:2015-06-24
申请号:CN201510172131.2
申请日:2015-04-13
Applicant: 山东省科学院海洋仪器仪表研究所
IPC: H01J49/12
Abstract: 本发明公开了一种正交离子源装置,包括三维离子化室和位于其外部的离子透镜组;三维离子化室包括离子排斥极、热电子发射灯丝、电子接收阱、直接进样管和样品加热钨丝;离子透镜组包括离子引出极、离子聚焦极、离子加速极和离子出口;在离子化室X轴方向,离子排斥极、样品加热钨丝和离子透镜组在同一直线上;在离子化室Y轴方向,热电子发射灯丝、电子接收阱正对;在离子化室Z轴方向,进样管和加热钨丝正对。本发明装置实现对液态样品直接进样,加热钨丝对吸附样品加热的同时进行电子轰击,通过控制加热钨丝电流,降低背景干扰。本发明的离子化方式产生的主要是单电荷离子,能量发散少,谱线简单,适用于难挥发的水体中金属元素的快速离子化。
-
公开(公告)号:CN108693242B
公开(公告)日:2024-06-11
申请号:CN201810685506.9
申请日:2018-06-28
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明属于水体监测术领域,具体涉及一种质谱在线水气分离装置。一种质谱在线水气分离装置,是由水体进样模块、水气分离模块及质谱保护模块三部分构成;所述的水体进样模块与水气分离模块连接;水气分离模块与质谱保护模块连接;质谱保护模块由不锈钢球、密封圈、弹簧及不锈钢管组成;不锈钢管的一端连接水气分离模块,另一端连接质谱仪;不锈钢球设置在不锈钢管内,其质谱端通过弹簧固定于不锈钢管内壁,不锈钢管靠近质谱端设有密封圈。本发明的质谱水气分离装置,主要适用于水体中气体在线监测,在质谱仪真空负压下实现在线水气分离,通过质谱保护模块后进入质谱仪实现在线监测。本发明的质谱水气分离装置适用于地表水及海水的在线水气预处理。
-
公开(公告)号:CN109045762B
公开(公告)日:2023-10-24
申请号:CN201811022276.4
申请日:2018-09-04
Applicant: 山东省科学院海洋仪器仪表研究所
Abstract: 本发明属于气液分离技术领域,具体涉及一种模块化的多级气液分离装置。包括液体进样模块、多级分离模块和气体出样模块;液体进样模块用于将液体样品形成水膜,形成的水膜与液体进样模块中的分离膜接触以进行气液分离;所述多级分离模块设置于所述液体进样模块和气体出样模块之间,所述多级分离模块中设置分离膜,且所述多级分离模块内部腔体的压力低于所述液体进样模块内部腔体的压力;所述气体出样模块内部腔体的压力低于所述多级分离模块内部腔体的压力。本发明所提供的多级气液分离装置在负压作用下实现了水体的在线水气多级分离,所述多级分离模块是模块化结构,可以在液体进样模块和气体出样模块之间任意数量的叠加。
-
公开(公告)号:CN110307830A
公开(公告)日:2019-10-08
申请号:CN201910645758.3
申请日:2019-07-17
Applicant: 山东省海洋仪器仪表科技中心 , 山东省科学院海洋仪器仪表研究所
Inventor: 郑威 , 惠力 , 杨立 , 朱洪海 , 赵彬 , 杨英 , 鲁成杰 , 杨书凯 , 王志 , 冉祥涛 , 杨俊贤 , 赵杰 , 付明阳 , 周扬 , 汤永佐 , 初士博 , 程永强 , 于雨 , 崔晓 , 石磊 , 万婧 , 刘茂科 , 李防震
IPC: G01C13/00
Abstract: 本发明属于海流观测技术领域,涉及海流及波浪的测量装置及方法。一种浮标链载倾斜海流测量系统,包括表面浮标体、海流计、缆绳;所述缆绳的一端与表面浮标体的底部连接,另一端锚固在海底;所述海流计拖拽连接在所述缆绳上;所述的海流计包括采集/处理模块,用于采集海流计倾角、方位和深度,转化为海流的流速值、流向值、深度值及波浪数据并储存。本发明的浮标链载倾斜海流测量系统,可以在不同深度上安装多个倾斜海流计,实现不同深度上的海流长期连续观测,利用接近水面位置处的海流值可以进行表层波浪测量。
-
-
-
-
-
-
-
-
-