-
公开(公告)号:CN111000553B
公开(公告)日:2022-09-27
申请号:CN201911395467.X
申请日:2019-12-30
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/346
Abstract: 本发明的基于投票集成学习的心电数据智能分类方法,其特征在于,通过以下步骤来实现:a).数据预处理;b).建立logistic回归模型;c).建立决策树模型;d).建立一个支持向量机;e).建立朴素贝叶斯模型;f).建立神经元模型;g).建立k邻近模型;h).模型集成,最终获得一个正确率不低于80%的模型,效果优于步骤b)至步骤g)中建立的单个模型。本发明的心电数据智能分类方法,首先从ccdd中获取足够数量的数据,将其分为训练集和测试集,然后建立各类模型,最后,获得一个正确率不低于80%的模型,可实现对“正常、房颤、房性早搏、偶发房性早搏、频发房性早搏、房性心动过速、房颤伴快速心室率”进行智能识别分类,实现心血管疾病的早发现、早治疗。
-
公开(公告)号:CN114385619B
公开(公告)日:2022-07-15
申请号:CN202210285171.8
申请日:2022-03-23
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/215 , G06F16/2458 , G06N3/04
Abstract: 本发明属于基于特定计算模型的计算机系统领域,提供了一种多通道海洋观测时序标量数据缺失值预测方法及系统,获取带有海洋缺失值的海洋观测时序标量数据;基于所述海洋观测时序标量数据,采用TA‑RNN模型,得到海洋缺失值预测结果;所述TA‑RNN模型包括卷积注意模块、空间注意模块和时间注意模块,所述卷积注意模块用于将所述海洋观测时序标量数据进行细化;所述空间注意模块用于捕获细化后的所述海洋观测时序标量数据的动态空间相关性;所述时间注意模块用于捕获空间注意模块输出数据中不同时间间隔之间的动态时间相关性。
-
公开(公告)号:CN119128794A
公开(公告)日:2024-12-13
申请号:CN202411152070.9
申请日:2024-08-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/25 , G06F18/214 , G06N3/0442
Abstract: 本发明提出一种基于记忆重放变分自动编码器的IoT数据在线预测系统,系统包括:预测模块,用于将待预测IoT数据输入至训练好的记忆重放VAE,得到预测结果;训练模块,用于训练记忆重放VAE,记忆重放VAE包括编码器和生成器;记忆重放VAE的训练过程为:将第一样本数据输入编码器,得到第一样本潜在因素和第一样本预测结果;生成器基于第一样本潜在因素得到第一样本重放数据;将第二样本数据和第一样本重放数据输入编码器,得到融合样本潜在因素,以及相应预测结果;基于标签和得到的预测结果,计算损失函数,当损失最小时,训练完成。本发明基于OLVAE结合注意力机制和脑重放机制,缓解编码器对旧知识的遗忘,实现IoT数据的高效预测。
-
公开(公告)号:CN116737521A
公开(公告)日:2023-09-12
申请号:CN202310744383.2
申请日:2023-06-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F11/34 , G06F11/30 , G06N3/0464 , G06N3/0455 , G06N3/0895
Abstract: 本发明属于HPC作业预测领域,提供了一种基于自监督对比学习的HPC作业功耗预测方法及系统,本发明采用了基于表示学习和自监督学习的方法进行训练,采用向量对比的方式进行学习,将生成的向量表示在时间戳粒度以及实例粒度进行对比;在时间粒度上进行对比,学习数据随时间的动态变化趋势;在实例粒度上进行对比,学习不同类别的数据之间的差异和相似特征;基于得到的动态变化趋势、差异和相似特征进行作业功耗预测。考虑了数据的连续性,可以在长期预测任务中取得较好的性能,计算复杂度也明显低于RNN和GRU模型。
-
公开(公告)号:CN116185604A
公开(公告)日:2023-05-30
申请号:CN202211594422.7
申请日:2022-12-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 本发明提出了一种深度学习模型的流水线并行训练方法及系统,涉及机器学习技术领域,具体方案包括:获取要训练的模型,对模型中每个网络层所占用的内存量进行预估,得到内存预估序列;利用前缀和分区算法对内存预估序列进行分区,将分区均衡分配到流水线上的GPU中;将训练数据集分批连续传入流水线中,进行流水线并行训练;其中,并行训练过程中,采用同步加异步混合的权重缓冲方式,对网络层的权重进行更新;本发明采用一种权重缓冲策略,保证同一小批数据在执行前向传播和反向传播时使用的是同一个版本的参数,从而提高模型训练精度,节省计算资源内存。
-
公开(公告)号:CN114866510A
公开(公告)日:2022-08-05
申请号:CN202210575498.9
申请日:2022-05-25
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: H04L61/106 , H04L49/9057 , H04L67/06
Abstract: 本发明属于网络通信技术领域,提供了一种基于InfiniBand网络的跨网异地互联通信方法及系统,该方法基于异地网关设备通过socket建立通信,相互发送自身设备的IB网卡端口的状态,网关设备互相确认IB网卡端口为启动状态时,等待子网管理服务开启;启动IB子网管理服务,根据IB子网管理协议,对子网管理数据包进行重构和转发,通过网关设备之间的socket通信将多个IB子网融合为一个IB子网;在该IB子网下,进行多个异地IB集群之间的通信,解决IB网络无法进行异地跨运营商网络互联的问题。
-
公开(公告)号:CN114385233B
公开(公告)日:2022-08-02
申请号:CN202210291811.6
申请日:2022-03-24
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本申请属于计算机系统技术领域,提供了一种跨平台自适应数据处理工作流系统及方法,包括客户端,被配置为基于应用程序编程接口调用和画布式拖拽构建工作流,将所构建的工作流通过Istio安全网关发送到服务端;服务端,被配置为基于服务器接口接收客户端所构建的工作流,基于运算符计算平台适配器进行工作流逻辑运算符的计算环境优化适配。本申请采用基于Kubernetes的微服务架构,采用Istio安全网关作为客户端与服务端的唯一通道,实现跨平台自适应数据工作流的处理。
-
公开(公告)号:CN114385601A
公开(公告)日:2022-04-22
申请号:CN202210291801.2
申请日:2022-03-24
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/21 , G06F16/22 , G06F16/2458 , G06F16/25
Abstract: 本发明涉及流式数据智能处理技术领域,提供了基于超算的云边协同高通量海洋数据智能处理方法及系统,包括基于历史海洋观测数据构建每个海洋观测数据流的初始海洋数据智能处理模型;实时获取每个海洋观测数据流的数据并进行预处理;基于预处理后的每个海洋观测数据流数据,对相应的初始海洋数据智能处理模型进行实时迭代训练更新,得到每个海洋观测数据流的最新海洋数据智能处理模型,保存在模型版本库中;通过调用每个海洋观测数据流的最新海洋数据智能处理模型对每个海洋观测数据流中不断流入的数据进行实时推理与预测;将超算训练优化后的模型推送到边缘端,在边缘端进行模型更新,并进行具体推理应用,从而避免了数据远程传输,降低了延迟。
-
公开(公告)号:CN109410194B
公开(公告)日:2022-03-29
申请号:CN201811222572.9
申请日:2018-10-19
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06T7/00 , G06V10/25 , G06V10/764 , G06V10/82 , G06K9/62
Abstract: 本发明的基于深度学习的食管癌病理图像处理方法,包括:a).病理切片扫描;b).圈注上皮区类型,将上皮区的正常区域、低级别和高级别癌前病变区域圈注出来;c).图像预处理,获取上皮小图像;d).卷积神经网络将每个上皮小图像沿其纵向均分为n个图像块,对每个图像块进行特征提取;e).长短期记忆网络LSTM,获取上皮小图像的特征向量;f).分类器分类;g).模型建立和调优,h).准确率计算。本发明的食管癌病理图像处理方法,经CNN、LSTM网络和分类器的处理后,获取每个上皮小图像为正常、低级别和高级别癌前病变类型的概率,为病理科食管癌全切片的科学利用提供了一种行之有效的数字图像处理方法,有益效果显著,适于应用推广。
-
公开(公告)号:CN114186668A
公开(公告)日:2022-03-15
申请号:CN202111498488.1
申请日:2021-12-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 本发明公开了一种物联网数据流预测的在线深度学习方法、系统和设备,包括采集观测数据,获取预设时间段内观测数据的目标数据点及目标数据点序列;对原始观测数据进行处理,并构建训练和测试样本;根据训练和测试样本建立ECNN模型进行在线深度学习。对比现有技术,本发明的有益效果在于:采用进化卷积神经网络框架,可以端到端地进行训练,既具有较好的数据特征学习能力,并且还可以随数据流自适应地进化,同时解决了容量可扩展性和可持续性问题。
-
-
-
-
-
-
-
-
-