一种基于悬浮微粒的信号通讯方法和装置

    公开(公告)号:CN114826851B

    公开(公告)日:2022-10-04

    申请号:CN202210732153.X

    申请日:2022-06-27

    Abstract: 本发明公开了一种基于悬浮微粒的信号通讯方法和装置。方法步骤如下:1)制备微粒悬浮状态;2)调控与测量悬浮微粒带电量;3)校准悬浮微粒电磁响应特性;4)施加电磁通讯信号;5)获取与解调电磁通讯信号。装置,包括悬浮捕获模块、电荷测控模块、电磁响应校准模块和通讯信号探测与解调模块;电磁响应校准模块用于提前获取悬浮微粒的必要先验信息,测量悬浮微粒的基底噪声和频域的电磁响应传递函数;通讯信号探测与解调模块用于恢复外部的电磁响应信号,并解调出信号的码元信息。针对现有的无线通讯系统所用的天线体积庞大、接收灵敏度偏低的问题,本发明至少具备两个方面的优势:一是悬浮微粒的体积更小,二是系统具有更高的接收灵敏度。

    可伸缩式吸气剂泵抽真空装置及应用方法

    公开(公告)号:CN114753991B

    公开(公告)日:2022-10-04

    申请号:CN202210679130.7

    申请日:2022-06-16

    Abstract: 本发明公开了一种可伸缩式吸气剂泵抽真空装置及应用方法。装置包括机械泵、分子泵、实验平台、离子泵、伸缩式吸气剂泵结构、真空规、真空腔、金属角阀、小抽气管、分子泵卡箍、大抽气管、大抽气管卡箍、硬管支撑、电动阀、硬管、硬弯管、离子泵支撑、离子泵角阀、支撑柱、离子泵直通管。其中伸缩式吸气剂泵结构由短直通管、螺钉、插板阀、伸缩管、直线导轨、调节架、手轮、手摇杆、右支架、定位块、左支架、吸气剂泵、左支架支撑、右支架支撑、调节丝杠等组成。利用伸缩式吸气剂泵结构,带动吸气泵剂整体移动,吸气剂泵远离或靠近真空腔,可适用经常破空的实验环境系统,可应用在量子传感、生物、化工、环境监测等需要抽超高真空领域。

    基于纳米微粒光学成像的光阱电场变化量标定装置及方法

    公开(公告)号:CN112858304B

    公开(公告)日:2021-08-03

    申请号:CN202110445513.3

    申请日:2021-04-25

    Abstract: 本发明公开一种基于纳米微粒光学成像的光阱电场变化量标定装置及方法,通过直观光学成像的方法,测量恒定电场作用下的线纳米粒子平衡位置位移量实现标定,避免错误信号的引入,增加差分标定的可信度。本发明的具体标定方法与装置不仅适用于电场量的标定,对于其他如磁力等的标定同样适用。通过本发明力学量的精确标定,可促进真空光阱传感技术的发展应用。同时本发明的标定装置可以帮助使用者进行感知微粒投送过程以及微粒动力学行为如粒子吸附、掉落等的监测。

    一种真空光阱起支方法及装置与应用

    公开(公告)号:CN112466506A

    公开(公告)日:2021-03-09

    申请号:CN202110128268.3

    申请日:2021-01-29

    Abstract: 本发明公开了一种真空光阱起支方法及装置与应用。利用脉冲激光使微粒脱离基板;目标微粒进入离子阱中先被捕获,并在离子阱中不断减速至光阱可捕获的速度并且位移至光阱的有效捕获范围内时,打开光阱,使目标微粒同时被光阱和离子阱捕获,之后关闭并挪走离子阱,或利用离子阱进一步冷却目标微粒的质心运动。光阱起支装置,包括基板、脉冲激光器、离子阱、光阱、控制装置,基板表面放置目标微粒,脉冲激光器位于基板的下方,离子阱位于基板的上方,离子阱与光阱的稳定捕获点重合,控制装置通过时序控制脉冲激光器、离子阱和光阱的开启时间。本发明解决了常压起支带来的问题,也可将光阱技术拓展应用到外太空等真空环境。

    一种利用光阱测量微粒光吸收特性的方法及装置

    公开(公告)号:CN111398100A

    公开(公告)日:2020-07-10

    申请号:CN201910965695.X

    申请日:2019-10-12

    Abstract: 本发明公开了一种利用光阱测量微粒光吸收特性的方法及装置。利用光阱稳定悬浮待测微粒,然后对捕获势阱中的待测微粒施加一束激发光束和一束探测光束,利用探测器收集经过微粒之后的探测光束;待测微粒吸收激发光束被瞬间加热,产生热透镜效应,对探测光束的折射发生变化,从而改变探测器上接收到的热光信号;根据热光信号的变化可解算出待测微粒对激发光束的光吸收特性;改变激发光束的波长进行测量,可得到在该波段内的光吸收特性谱。装置包括捕获光阱模块、激发探测模块和控制模块。本发明采用光学非接触式的方法测量微量样品的光吸收特性,测量精度高,响应速度快;可在光阱中原位测量微粒的光吸收特性,实时筛选出光吸收特性良好的微粒样品。

    悬浮摆隔振装置、万有引力常数的测量装置及其测量方法

    公开(公告)号:CN117471563B

    公开(公告)日:2024-04-19

    申请号:CN202311371001.2

    申请日:2023-10-20

    Abstract: 本申请提供一种悬浮摆隔振装置、万有引力常数的测量装置及其测量方法。该悬浮摆隔振装置包括两个同心线圈、金属板、质量源及引力源。金属板放置在两个同心线圈上,两个同心线圈具有一中空腔,质量源通过穿过中空腔的连接件而连接到金属板的中心,引力源邻近质量源设置。其中,当在两个同心线圈中分别通有相反的时谐交变电流时,在两个同心线圈中产生时变电场,时变电场在两个同心线圈中产生时变磁场,时变磁场在金属板中感应产生涡流,涡流进而对金属板产生预定的悬浮力以使金属板悬浮于两个同心线圈的上方预定高度。本申请能够减小外界环境对于测量过程的干扰,提高万有引力常数的测量精度。

    真空起支装置及真空起支方法
    27.
    发明公开

    公开(公告)号:CN117649963A

    公开(公告)日:2024-03-05

    申请号:CN202311348567.3

    申请日:2023-10-17

    Abstract: 本申请提供一种真空起支装置及真空起支方法。该真空起支装置包括真空模块、光学捕获电学探测模块及起支模块。其中,真空模块包括真空腔、真空泵及真空阀,真空泵用于对真空腔进行抽真空,真空阀用于调节真空腔内的气压。起支模块安装在真空模块的外部,用于将微粒输送至真空腔内到达光阱位置,起支模块包括气瓶、与气瓶连接的雾化杯、以及与雾化杯连接的起支过渡外壳。雾化杯用于将气瓶放出的气体进行雾化,并通过起支过渡外壳将雾化后的微粒喷入到真空腔内。光学捕获电学探测模块用于通过光学手段形成光学势阱来捕获真空腔中的微粒,并探测微粒的运动信息。

    电场传感探头
    28.
    发明公开
    电场传感探头 审中-实审

    公开(公告)号:CN117214548A

    公开(公告)日:2023-12-12

    申请号:CN202311188906.6

    申请日:2023-09-08

    Abstract: 本公开是关于一种电场传感探头,用于探测悬浮微粒的运动信息,测量电场强度,所述电场传感探头包括壳体和测量模块;壳体,设有真空腔室;测量模块,包括捕获模块和探测模块,所述捕获模块用于传输激光光束形成捕获所述悬浮微粒的光阱区域,所述探测模块用于探测所述悬浮微粒的所述运动信息;所述捕获模块和所述探测模块沿第一方向间隔设于所述真空腔室内。如此,极大地减小了电场传感探头的体积和重量,有利于将电场传感探头应用于小型化设备。

    重力测量装置
    29.
    发明公开
    重力测量装置 审中-实审

    公开(公告)号:CN117111163A

    公开(公告)日:2023-11-24

    申请号:CN202310988309.5

    申请日:2023-08-07

    Abstract: 本公开是关于一种重力测量装置,包括测量室、电极组件、透镜、第一生光组件和第二生光组件;测量室包括壳体,所述壳体设有腔室;电极组件设于所述壳体,所述电极组件通电后在所述腔室内产生电场;透镜设于所述壳体;第一生光组件用于产生第一激光光束,并使所述第一激光光束穿过所述透镜,在所述腔室内形成使待测物悬浮并捕获所述待测物的光阱区域;第二生光组件用于产生第二激光光束,并使所述第二激光光束传输至所述腔室内,以探测所述待测物的带电量。如此,使重力测量装置空间光路简单、系统体积小、移动便利。

    一种悬浮带电微球测量电场的装置及方法

    公开(公告)号:CN117074801A

    公开(公告)日:2023-11-17

    申请号:CN202311328695.1

    申请日:2023-10-14

    Abstract: 本发明公开了一种悬浮带电微球测量电场的装置及方法。本发明将同一激光束分为两组光路,一组为测量光路,用于测量超高真空中被悬浮的带电介质微球的质心运动位移,另一组为参考光路,参考光路除使用电场屏蔽器将被悬浮微球包围以外,其它结构与测量光路相同,可抑制激光光功率和指向波动引起的微球位移测量误差。测量光路和参考光路固定于同一平台,可抑制环境振动引起的微球位移测量误差。本发明中利用测量光路和参考光路之间的共模抑制效应,抑制了激光波动和环境振动的影响,大幅度提高了悬浮带电微球测量空间电场方案的精度性能。

Patent Agency Ranking