一种基于多星敏感器的自适应组合确定卫星姿态角的方法

    公开(公告)号:CN110411438B

    公开(公告)日:2021-02-09

    申请号:CN201910631059.3

    申请日:2019-07-12

    Abstract: 本发明涉及一种基于多星敏感器的自适应组合确定卫星姿态角的方法,属于航天器姿态确定与控制领域。首先根据地面评估结果确定星敏的优选顺序,精度较高的星敏感器或者夹角关系较好的星敏感器优先级高。其次,当高优先级的星敏感器无效,而低优先级星敏或星敏组合有效时,短时间内利用陀螺预估卫星姿态,高优先级星敏感器长时间无效再切换为低优先级星敏参与定姿。最后,当高优先级星敏组合有效时,则瞬时从低优先级星敏切换为高优先级星敏参与定姿。此方法实现了星敏定姿基准自适应组合定姿的目的,大大提高了姿态测量的精度。该算法已应用于多个在轨型号中。

    基于框架角自适应调整的CMG操纵方法及系统

    公开(公告)号:CN108333944B

    公开(公告)日:2020-05-15

    申请号:CN201810164240.3

    申请日:2018-02-27

    Abstract: 本发明公开了一种基于框架角自适应调整的CMG操纵方法及系统。其中,该方法包括如下步骤:(1)依次计算各CMG角动量方向单位矢量和飞行器期望控制力矩方向单位矢量的夹角,得到包含所有夹角的夹角向量Φ,若夹角向量Φ中的最小夹角小于阈值ε,则需要进行自适应调整并计算调整方向;(2)在自适应调整时间内,计算步骤(1)中最小夹角所对应的CMG框架的正弦运动转速及相应的力矩,再计算其他CMG的随动补偿转速;(3)将步骤(2)中的最小夹角所对应的CMG框架的正弦运动转速、其他CMG的随动补偿转速与CMG的其他操纵律合成,作为CMG控制指令输入。本发明解决了因CMG奇异问题导致卫星不能输出期望控制力矩、甚至影响飞行器性能指标实现的问题。

    一种基于三轴转台的惯性空间陀螺标定试验方法

    公开(公告)号:CN106525073A

    公开(公告)日:2017-03-22

    申请号:CN201610856114.5

    申请日:2016-09-27

    CPC classification number: G01C25/005

    Abstract: 本发明涉及一种基于三轴转台的惯性空间陀螺标定试验方法,能够在使用三轴转台提供陀螺组件姿态转动的同时根据三轴转台三个旋转轴的实时转角输出计算地球自转角速度的补偿量,从而消除了地球自转对陀螺测量输出的影响,保证了陀螺标定算法所需的惯性空间恒定角速度。同时,本发明方法根据三轴转台的三个旋转轴附带转动特性定义了其三个旋转轴的转动顺序规则和初始零位与大地水平坐标系重合的三轴转台本体坐标系和参考惯性坐标系,为试验中根据陀螺输出确定惯性系角度增量和根据三轴转台三个旋转轴的转角输出确定惯性系姿态提供了参考基准。本发明方法可显著提高地面陀螺标定试验的精度,能够保证地面对陀螺组件进行有效的标定和试验结果验证,可为在轨卫星开展相关标定试验建立良好基础,并提高陀螺姿态确定精度。

    一种基于平衡方程等价性的陀螺故障诊断方法

    公开(公告)号:CN105300406A

    公开(公告)日:2016-02-03

    申请号:CN201510595879.3

    申请日:2015-09-17

    CPC classification number: G01C25/005

    Abstract: 本发明一种基于平衡方程等价性的陀螺故障诊断方法,公开了一种适用于航天器陀螺故障诊断方法,首先将具有冗余测量的5个陀螺以四个陀螺为一组合形成5个陀螺组,并在每一陀螺组中任意选择一组平衡方程计算其平衡方程系数及平衡方程误差;然后,针对每组陀螺根据其平衡方程系数计算得到与构型相关参量,并将该参量与设定的故障阈值的乘积作为故障判断依据值;最后,将每组陀螺的平衡方程误差与其计算故障判断依据值进行比较,根据所有陀螺组比较结果对故障陀螺进行定位。本发明基于陀螺组平衡方程之间的等价性结论,以算法最小计算量基础上实现了陀螺故障准确诊断效果,同时对故障判断阈值给出了明确的选取原则,具有很强的工程可操作和可实现性。

    一种高速大范围机动目标轨迹的智能实时预测方法

    公开(公告)号:CN110309909A

    公开(公告)日:2019-10-08

    申请号:CN201910562518.7

    申请日:2019-06-26

    Abstract: 一种高速大范围机动目标轨迹的智能实时预测方法,首先提出了学习样本建立方法;然后构建了基于改进BP神经网络的目标运动规律学习及训练机制;最后通过单步预测与滚动预测方法,实现了空天动目标高速大范围机动轨迹的智能、快速、准确预测;本发明仅需知道空天动目标的历史及当前时刻的位置数据,无需目标的运动模型,同时通过设计动量因子和采用变步长迭代策略提高了传统BP神经网络的收敛速度、减小了收敛过程中的振荡,大幅提升了轨迹预测的精度,可直接应用于各类高速、高机动目标的轨迹预测问题,具有较强的适用性,为后续针对X-37B等高超声速飞行器监视、跟踪、拦截等任务提供了理论基础和技术储备。

Patent Agency Ranking