-
公开(公告)号:CN113624683B
公开(公告)日:2022-09-27
申请号:CN202110757652.X
申请日:2021-07-05
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开一种斜入射式共焦布里渊光谱测量系统和方法,解决现有折射率测量系统和方法测量精度低、空间分辨能力低等问题。所述系统,包含:照明模块,用于产生系统入射光;系统入射光经分光平片透射进入参考模块,反射进入光谱激发模块;标准样品经激发产生的布里渊散射光被收集后经分光平片反射进入光谱探测模块;光谱探测模块,探测得到标准样品的背向和对称方向布里渊散射光谱频移值,进而标定系统入射光角度;待测样品经激发产生的布里渊散射光被收集后经分光平片透射进入光谱探测模块;光谱探测模块,探测得到待测样品的背向和对称方向布里渊散射光谱频移值。所述方法使用所述系统。本发明可实现高精度、快速三维折射率测量。
-
公开(公告)号:CN114784609A
公开(公告)日:2022-07-22
申请号:CN202210355480.8
申请日:2022-04-06
Applicant: 北京无线电计量测试研究所 , 北京邮电大学
Abstract: 本申请公开了一种激光功率的量子控制方法和装置,接收输入的激光信号,调制所述激光信号,输出0级和“±1”级衍射光,将输出的除“+1”级衍射光外的其他衍射光频率分量遮挡,将输出的“+1”级衍射光耦合到铷原子钟气室,调整“+1”级衍射光方向与铷原子钟气室的原子束方向平行,实时测量铷原子钟的输出频率,进一步将输出频率反馈用于调制激光信号。该方法和装置实现了激光功率的稳定控制。
-
公开(公告)号:CN114759426A
公开(公告)日:2022-07-15
申请号:CN202210355982.0
申请日:2022-04-06
Applicant: 北京无线电计量测试研究所 , 北京邮电大学
IPC: H01S3/13 , H01S5/0683
Abstract: 本申请公开了一种激光功率的量子稳定方法和装置。接收输入的第一激光,所述第一激光的波长与原子钟能级跃迁频率共振;测量原子钟的输出频率,作为第一输出频率;接收输入的第二激光,所述第二激光的波长与第一激光的波长相同,第二激光功率已知且稳定;测量原子钟的第二输出频率,作为标定输出频率;将所述第一输出频率与标定输出频率之差作为反馈,控制第一激光的功率。该方法和装置实现了激光功率的量子稳定控制,不仅能够适应宽范围的激光功率测量,还能保持高精度。
-
公开(公告)号:CN114705228A
公开(公告)日:2022-07-05
申请号:CN202210303034.2
申请日:2022-03-25
Applicant: 北京无线电计量测试研究所
Abstract: 本申请公开了一种多光束平行激光生成装置、平行准直调节装置及方法。通过激光多光束平行准直调节装置及方法,利用两个分束镜的反射光进行干涉,观察干涉条纹后通过调节装置来调节激光光源的平行度及准直度,以此得到高平行度和准直度的激光用于多光束平行激光生成装置;利用中空屋脊棱镜反射镜和猫眼装置,形成多次反射,产生多束平行光。本发明降低了测量过程中平行度上的误差、增加了准直装置,适用于平行度和准直度要求高的多光束激光物理实验、避免了实验中的杂光干扰且降低了使用的透镜数量和大小、节约了成本。
-
公开(公告)号:CN114660520A
公开(公告)日:2022-06-24
申请号:CN202210272774.4
申请日:2022-03-18
Applicant: 北京无线电计量测试研究所
IPC: G01R35/00
Abstract: 本申请公开的一种示波器上升时间现场校准一体化系统,所述系统包括:供电接口模块,用于连接外部电源,以便向所述系统提供电能;激光发射模块,用于发射激光,所述激光发射模块与所述供电接口模块电连接;光电探测模块,用于获取激光发射模块发射的激光,并结合直流电产生超快脉冲,所述光电探测模块与所述激光发射模块电连接;脉冲输出接口模块,用于输出所述光电探测模块产生的所述超快脉冲。
-
公开(公告)号:CN114421932A
公开(公告)日:2022-04-29
申请号:CN202111669079.3
申请日:2021-12-31
Applicant: 北京无线电计量测试研究所
Abstract: 本申请公开了一种高低频互证的绝对相位噪声标准不确定度验证方法和系统,该方法包括:确定毫米波相对噪声标准与低频绝对相位噪声标准相比所存在的最大允许误差的来源;根据最大允许误差的来源对低频绝对相位噪声标准和毫米波绝对相位噪声标准进行测试;根据测试得到的参数对毫米波绝对相位噪声标准的不确定度进行验证。通过本申请解决了毫米波绝对相位噪声标准装置不确定度无法验证的问题,从而验证了毫米波绝对相位噪声标准的不确定度。
-
公开(公告)号:CN114384457A
公开(公告)日:2022-04-22
申请号:CN202111672301.5
申请日:2021-12-31
Applicant: 北京无线电计量测试研究所
IPC: G01R35/00
Abstract: 本申请公开了一种毫米波绝对相位噪声标准的基带定标方法和装置,该方法包括:将毫米波绝对相位噪声标准和信号发生器发出的波分别经过衰减器A和衰减器B之后进行混频下变频;通过上边带下变频的方式测量混频后下变频的信号的第一载波功率;通过下边带下变频的方式测量混频后下变频的信号的第二载波功率;通过上下边带下变频的方式测量噪声功率谱密度;测量底部噪声的功率谱密度;将测量所述第一载波功率、所述第二载波功率、噪声功率谱密度和功率谱密度中得到的测量值,带入基带标定方程。通过本申请解决了传统定标技术无法满足毫米波绝对相位噪声标准装置的定标需求的问题,从而定标精度高以及基带定标的动态范围大。
-
公开(公告)号:CN112994691A
公开(公告)日:2021-06-18
申请号:CN202110201380.5
申请日:2021-02-23
Applicant: 北京无线电计量测试研究所
IPC: H03L7/26
Abstract: 本发明公开一种非厄米系统自旋压缩态的制备方法,包括:提供一非厄米系统,所述非厄米系统具有其原子自旋态依赖于原子相互作用的能级结构;向所述非厄米系统施加囚禁势场,使原子被束缚于周期性的囚禁势阱中,以得到原子的双占据态;通过光缔合将原子从双占据态变到分子态,记录来自所述囚禁势阱的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数最小时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实现简单,不仅未破坏自旋压缩态,反而维持了自旋压缩效应稳定,具有反直觉的物理效应,能够应用于光学原子频标中,突破量子系统的测量极限。
-
公开(公告)号:CN103472000B
公开(公告)日:2015-11-18
申请号:CN201310446997.9
申请日:2013-09-25
Applicant: 北京无线电计量测试研究所
IPC: G01N21/17
Abstract: 本发明公开了含缓冲气的原子气体中各组分比例的检测方法:将准直激光器作为探测光源输出准直光束;准直光束通过格兰泰勒棱镜得到线偏振准直光束;线偏振准直光束的总光强由光强功率计进行测量并将测量得到的数据传输至电脑;线偏振准直光束入射到样品台上并在通过样品台后形成向四周扩散的传输光;向四周扩散的传输光的光强由积分球和示波器进行测量并将测量得到的数据传输至电脑;向四周扩散的传输光的光强和线偏振准直光束的总光强由电脑进行数据分析计算得到向四周扩散的传输光的透射率,进一步计算得出含缓冲气体的原子气体中非缓冲气体和缓冲气体的组分比例F。解决了封闭气室中含缓冲气体的原子气体组分无损检测问题。同时还公开了该装置。
-
公开(公告)号:CN103528994A
公开(公告)日:2014-01-22
申请号:CN201310476184.4
申请日:2013-10-12
Applicant: 北京无线电计量测试研究所
IPC: G01N21/45
Abstract: 本发明公开了一种基于光学相干背散射效应的原子气体浓度检测装置及方法,该原子气体浓度检测装置包括准直激光器(1)、格兰泰勒棱镜(2)、反射镜(3)、消偏振分光棱镜(4)、样品台(5)、傅里叶透镜(6)、检偏器(7)、探测器(8)和计算机(9);准直激光器(1)、格兰泰勒棱镜(2)和反射镜(3)沿横向方向依次设置于同一条直线上;反射镜(3)和消偏振分光棱镜(4)沿纵向方向设置于同一条直线上;样品台(5)设置于消偏振分光棱镜(4)的一侧,在消偏振分光棱镜(4)的另一侧依次设置傅里叶透镜(6)、检偏器(7)和探测器(8);探测器(8)通过数据线与计算机(9)电连接;探测器(8)设置于傅里叶透镜(6)的焦面上。所述原子气体浓度检测装置及方法能够实现原子气体封闭汽室内的原子浓度的无损检测。
-
-
-
-
-
-
-
-
-