一种基于车载LiDAR数据的电力线提取与拟合方法

    公开(公告)号:CN103473734B

    公开(公告)日:2016-09-14

    申请号:CN201310421449.0

    申请日:2013-09-16

    Applicant: 南京大学

    Abstract: 基于车载LiDAR数据的电力线提取与拟合方法,方法如下:首先利用体元划分车载LiDAR点云,确定各个体元内的点;然后根据真实电力线的分布特点剔除不含有电力线点云的体元;再将过滤得到的电力线点云依据电力线走廊进行划分,并利用AutoClust算法对电力线点云进行初始聚类;接着使用基于端部拟合线段的聚类合并方法,将属于同一电力线的初始点云聚类合并到一起;最后根据电力线的特性,恢复断裂的电力线,最终得到可用以表征单条电力线的点云,并以此进行三维拟合。本发明能够实现海量车载LiDAR数据中电力线点云的自动快速提取,实现了单条电力线的准确识别以及电力线三维模型的精确拟合。

    一种像素级SAR影像时间序列构建的局部自适应配准方法

    公开(公告)号:CN103236067B

    公开(公告)日:2015-11-18

    申请号:CN201310172271.0

    申请日:2013-05-10

    Applicant: 南京大学

    Abstract: 本发明涉及一种像素级SAR影像时间序列构建的局部自适应配准方法,方法如下:数据预处理之后从主从影像上提取同名特征点对,使用最小二乘法计算二次多项式参数并计算匹配总体误差,然后比较匹配总体误差与给定阈值的大小,若匹配总体误差小于或等于给定阈值,则从影像与主影像的位置关系由上述二次多项式确定,最后进行影像配准;反之,若总误差大于给定阈值,则进行误差点聚类获取畸变区域,将主、从影像的正常区域作为一对新主从影像,畸变区域作为另一对新主从影像,对两对新的主、从影像重复计算二次多项式参数及以后的步骤,直至所有新主、从影像的同名特征点对匹配总体误差小于给定阈值,然后进行影像配准。

    一种融合POI预分类和图神经网络的城市街区功能分类方法

    公开(公告)号:CN115100395B

    公开(公告)日:2025-02-14

    申请号:CN202210736883.7

    申请日:2022-06-27

    Applicant: 南京大学

    Abstract: 本发明公开一种融合POI预分类和图神经网络的城市街区功能分类方法,本分类方法包括以下步骤:S1、利用城市街区POI构建Delaunay三角网,S2、根据与每个POI点相连的Delaunay三角网边的平均边长,确定城市街区内POI的重要性排序,S3、选取城市街区内排名前三的POI类型,作为城市街区功能的组合标签,S4、对组合标签进行归并得到城市街区功能伪标签,S5、基于Delaunay三角网建立每个城市街区的POI图网络,S6、利用城市街区功能伪标签,训练图神经网络分类模型,S7、利用训练好的图神经网络分类模型进行城市街区功能分类。本发明方法能够提取POI数据的空间结构信息,丰富了POI数据的语义信息,从而提高城市街区功能分类的准确率。

    基于建筑轮廓的车载和航空LiDAR数据配准方法

    公开(公告)号:CN103324916B

    公开(公告)日:2016-09-14

    申请号:CN201310227705.2

    申请日:2013-06-07

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于建筑轮廓的车载和航空LiDAR数据配准方法,该方法从车载和航空LiDAR数据中分别提取二维建筑轮廓,并通过轮廓线段高程分割法得到车载和航空三维建筑轮廓线段;然后分别从车载和航空三维建筑轮廓线段中选取两对轮廓线段,计算该两对三维轮廓线段的初始转换矩阵;然后对初始转换矩阵进行迭代运算,若车载三维轮廓线段和三维建筑轮廓线段中匹配线段的数量大于指定阈值或者匹配线段的数量最多,则所述初始转换矩阵定义为可靠转换矩阵,利用所述可靠转换矩阵完成车载LiDAR数据和航空LiDAR数据的配准。本发明能够实现车载和航空LiDAR数据的自动高精度配准,其配准精度可以达到分米级。

    一种基于车载LiDAR数据的电力线提取与拟合方法

    公开(公告)号:CN103473734A

    公开(公告)日:2013-12-25

    申请号:CN201310421449.0

    申请日:2013-09-16

    Applicant: 南京大学

    Abstract: 基于车载LiDAR数据的电力线提取与拟合方法,方法如下:首先利用体元划分车载LiDAR点云,确定各个体元内的点;然后根据真实电力线的分布特点剔除不含有电力线点云的体元;再将过滤得到的电力线点云依据电力线走廊进行划分,并利用AutoClust算法对电力线点云进行初始聚类;接着使用基于端部拟合线段的聚类合并方法,将属于同一电力线的初始点云聚类合并到一起;最后根据电力线的特性,恢复断裂的电力线,最终得到可用以表征单条电力线的点云,并以此进行三维拟合。本发明能够实现海量车载LiDAR数据中电力线点云的自动快速提取,实现了单条电力线的准确识别以及电力线三维模型的精确拟合。

    一种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法

    公开(公告)号:CN103035006A

    公开(公告)日:2013-04-10

    申请号:CN201210541289.9

    申请日:2012-12-14

    Applicant: 南京大学

    Abstract: 本发明涉及一种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法,包括以下步骤:利用LiDAR激光点云数据生成激光回波强度影像;激光回波强度影像与遥感影像全色波段进行配准;使用主成分分析法(PCA)对配准后的激光回波强度影像与遥感影像全色波段进行融合,获得融合影像;对融合影像进行LEGION图像分割。与现有技术相比,本发明利用主成分分析法(PCA)融合激光回波强度影像和高分辨率遥感影像全色波段,综合利用两种不同数据源作为LEGION分割方法的输入数据,较好保留了LiDAR数据和全色波段影像的特征,有效地提高了高分辨率遥感影像的分割精度。本发明综合使用LiDAR数据和遥感影像的信息来进行LEGION分割,实践证明,该技术够能有效地进行遥感影像分割,得到满意的分割效果。

    基于LiDAR数据与正射影像的停车场结构提取方法

    公开(公告)号:CN102938064A

    公开(公告)日:2013-02-20

    申请号:CN201210483627.8

    申请日:2012-11-23

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于LiDAR数据与正射影像的停车场结构提取方法,该方法利用LiDAR数据将停车场分为空地区域和非空地区域,从LiDAR数据中生成非空地区域的车辆面片的中轴线,从正射影像数据中得到空地区域中的停车场车位线;套合非空地区域中的车辆中轴线和空地区域中的车位线,依其最大相交方向划分停车道;计算停车场结构参数,生成停车道的分割线,完成对停车场结构的提取。该方法能够解决停车场结构提取过程中面临的光照变化、阴影效应、透视变形以及车辆遮盖等问题,准确且高精度地提取停车场的结构。

    基于Landsat数据源的珊瑚岛礁遥感信息自动提取方法

    公开(公告)号:CN102032903A

    公开(公告)日:2011-04-27

    申请号:CN201010567507.7

    申请日:2010-12-01

    Applicant: 南京大学

    Abstract: 本发明公开了基于Landsat数据源的珊瑚岛礁遥感信息自动提取方法,属于遥感影像地物自动提取领域。其步骤为:遥感影像辐射定标;基于图像的遥感影像大气校正;对遥感影像进行MeanShift滤波,消除条带和椒盐噪声;对影像第5波段进行直方图阈值分割,区分非高潮高地和高潮高地;对于高潮高地区分陆地植被和灰沙/建筑;对于非高潮高地,区分低潮高地和非干出质底;对于低潮高地区分海藻/海草和浅水珊瑚;对于非干出质底区分深水珊瑚和开放水体。本发明能够分阶段逐层次分解地提取出陆地植被、灰沙/建筑、海藻/海草、浅水珊瑚、深水珊瑚5种珊瑚岛礁覆盖类型及开放水体背景信息,实验表明,本发明提取精度较高,能够有效改善珊瑚岛礁遥感调查与监测的效率。

Patent Agency Ranking