-
公开(公告)号:CN114703090A
公开(公告)日:2022-07-05
申请号:CN202210230090.8
申请日:2022-03-09
Applicant: 南京理工大学
IPC: C12N1/20 , C02F3/34 , C12R1/07 , C02F101/38 , C02F101/34
Abstract: 本发明公开了一株中度嗜盐硝基苯降解菌及其应用,属于有机污染物生物法处理技术领域。本发明以高盐度暴露的活性污泥为菌源,以将葡萄糖和硝基苯为碳源、含高盐(8.5%~9.5%w/v NaCl)无机盐培养基作为筛选培养基,采用划线方法进行分离纯化,得到了一株可降解硝基苯的中度嗜盐芽孢杆菌。经分子生物学鉴定为Bacillus,命名为Bacillus pumilus NJUST51,保藏编号为CCTCC NO:M 2022199。本发明的中度嗜盐芽孢杆菌可在高盐环境下(8.5%~9.5%w/v NaCl)培养生长,同步实现硝基苯的高效降解,且其胞外多聚物(EPS)在降解过程中起重要作用。Bacillus pumilus NJUST51具有高效的盐度适应能力和有机物降解能力,适用于高盐浓度含硝基苯类化工废水的生物处理,且其胞外多聚物在降解过程中发挥作用不容小觑。
-
公开(公告)号:CN111762880A
公开(公告)日:2020-10-13
申请号:CN202010711300.6
申请日:2020-07-22
Applicant: 南京理工大学
IPC: C02F3/12 , C02F101/30 , C02F101/38 , C02F101/36 , C02F1/30
Abstract: 本发明属于污水处理技术领域,公开了一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法。包括以下步骤:1)将复合半导体@载体材料置于反应器中,向接种有厌氧污泥的反应器中导入废水,使废水浸没所述复合半导体@载体材料;所述复合半导体@载体材料包括导电载体以及导电载体上负载的复合半导体材料;2)对厌氧污泥进行驯化培养一段时间,使复合半导体材料的表面负载生物膜,构建光激发空穴强化生物反应器;3)利用所述反应器在光照条件下处理废水中难降解污染物。本发明的方法将半导体光催化技术与生物处理技术耦合,利用半导体材料与微生物的协同反应加强对废水中有机污染物的强化降解,大大提高降解效率。
-
公开(公告)号:CN108410758B
公开(公告)日:2020-07-31
申请号:CN201810177495.3
申请日:2018-03-05
Applicant: 南京理工大学
IPC: C12N1/20 , C02F3/34 , C12R1/01 , C02F101/38
Abstract: 本发明公开了一株三氮唑降解菌及其在含三氮唑废水处理中的应用。本发明以用于去除三氮唑的活性污泥反应器中的活性污泥作为筛选菌源,采用以三氮唑为唯一碳源和氮源的筛选培养基进行富集,采用培养基划线的方法进行分离纯化,得到了一株三氮唑降解菌株,经分子生物学鉴定为Raoultella,命名为Raoultella sp.NJUST42,保藏编号为CCTCC NO:M 2018050。本发明的三氮唑降解菌,可以利用三氮唑为唯一碳源和氮源进行代谢和生长。将Raoultellasp.NJUST42接种至含三氮唑的实际工业废水中,在108小时内三氮唑去除率达50%以上,在三氮唑的废水处理中具有良好的应用前景。
-
公开(公告)号:CN106047746B
公开(公告)日:2019-06-25
申请号:CN201610319899.2
申请日:2016-05-13
Applicant: 南京理工大学
IPC: C12N1/20 , C02F3/34 , C12R1/01 , C02F101/34
Abstract: 本发明公开了一株吡啶降解噬染料菌及其在含吡啶废水处理中的应用。本发明从用于去除吡啶的SBR反应器中取出的成熟好氧颗粒污泥直接筛选,并以吡啶为唯一碳源、氮源的筛选培养基进行分离,得到了吡啶降解特效菌株,经分子生物学鉴定为噬染料菌Pigmentiphaga sp.,命名为Pigmentiphaga sp.NJUST35,保藏编号为CCTCC NO:M2016013。本发明的吡啶降解噬染料菌,可以以吡啶为唯一碳源和氮源进行生长。在吡啶工业废水中加入Pigmentiphaga sp.NJUST35进行处理,吡啶降解率、COD去除率和氨氮转化率分别为100%、76.3%和35.61%。该菌株具有高效的吡啶降解能力、高矿化能力以及对吡啶的毒性具有很好的适应能力及耐受性能,在高浓度吡啶废水的处理中具有良好的应用前景。
-
公开(公告)号:CN105417689A
公开(公告)日:2016-03-23
申请号:CN201510751936.2
申请日:2015-11-06
Applicant: 南京理工大学
CPC classification number: Y02W10/15 , C02F3/1263 , C02F3/302 , C02F2003/001 , C02F2003/003 , C02F2101/38 , C02F2203/004 , C02F2305/06
Abstract: 本发明公开了一种利用生物炭加速好氧污泥颗粒化的方法。所述的好氧颗粒污泥以吡啶降解菌Rhizobium sp.NJUST18和普通活性污泥为复合接种物,采用序批式反应器的反应器形式,利用生物炭作为好氧颗粒污泥的晶核,促进吡啶降解好氧颗粒污泥的快速形成。本发明所提供的具有吡啶降解功能的好氧颗粒污泥,以吡啶为唯一碳源、氮源进行生长,颗粒污泥培养成熟后,颗粒形状规则,沉降性能好,反应体系污泥浓度高,可实现高浓度吡啶的降解并同步亚硝化,且可有效地缩短用于处理难生物降解废水的好氧颗粒污泥的培养时间。
-
公开(公告)号:CN119977166A
公开(公告)日:2025-05-13
申请号:CN202510310266.4
申请日:2025-03-17
Applicant: 南京理工大学 , 江苏环保产业股份有限公司
IPC: C02F3/30 , C02F1/28 , C02F3/02 , C02F101/30 , C02F1/00
Abstract: 本发明公开了一种强化去除对苯二甲酸生产废水尾水中有机质的方法。所述方法包括:(1)在厌氧段加入零价铁强化厌氧还原;(2)厌氧出水依次泵入缺氧池和好氧池,好氧出水回流至缺氧池进行反硝化;(3)好氧段中加入粉末活性炭,构建PACT工艺,强化有机物的降解;(4)好氧出水泵入曝气生物滤池,基于吸附强化生物降解。本发明采用零价铁还原‑缺氧/好氧内循环‑PACT‑BAF组合工艺提升了PTA废水处理的出水水质,在工业废水处理中具有广泛的应用前景。
-
公开(公告)号:CN114715983B
公开(公告)日:2024-05-07
申请号:CN202210477152.5
申请日:2022-05-03
Applicant: 南京理工大学
IPC: C02F1/461 , C02F1/48 , C02F101/10
Abstract: 本发明公开了一种低电流密度促进铁碳微电解深度除磷的方法。所述方法通过在铁碳微电解系统中引入电场,实现含磷废水的去除。本发明在铁碳微电解系统中引入低电流密度,能够有效地促进铁碳微电解填料中铁的氧化,提高除磷效率,同时延长铁碳微电解填料的寿命,减少损耗节约成本,实现磷酸铁盐的回收利用。
-
公开(公告)号:CN113019417B
公开(公告)日:2022-12-13
申请号:CN202110281797.7
申请日:2021-03-16
Applicant: 南京理工大学 , 江苏源理环保产业发展有限公司
IPC: B01J27/24 , B01J37/08 , C02F9/14 , C02F1/30 , C02F3/12 , C02F101/34 , C02F101/36
Abstract: 本发明公开了一种B掺杂的g‑C3N4/BiVO4光催化剂及其制备与应用。所述催化剂以B掺杂的g‑C3N4、钒酸盐以及铋盐为基础材料,经高温煅烧而成;其中,所述煅烧温度不低于400℃;且,当通过拉曼散射效应对散射光谱进行分析时,所述光催化剂在820.0±1.0cm‑1处具有峰,并且在298.2±0.5cm‑1处具有峰。基于制备的B掺杂异质结g‑C3N4/BiVO4催化剂辅助优化含卤代酚废水处理过程中菌群结构,且在光催化降解的作用下,生物膜利用光催化降解后生成的中间产物作为能量,加速生物膜成熟,系统可以实现快速启动。
-
公开(公告)号:CN114715983A
公开(公告)日:2022-07-08
申请号:CN202210477152.5
申请日:2022-05-03
Applicant: 南京理工大学
IPC: C02F1/461 , C02F1/48 , C02F101/10
Abstract: 本发明公开了一种低电流密度促进铁碳微电解深度除磷的方法。所述方法通过在铁碳微电解系统中引入电场,实现含磷废水的去除。本发明在铁碳微电解系统中引入低电流密度,能够有效地促进铁碳微电解填料中铁的氧化,提高除磷效率,同时延长铁碳微电解填料的寿命,减少损耗节约成本,实现磷酸铁盐的回收利用。
-
公开(公告)号:CN111762880B
公开(公告)日:2021-12-10
申请号:CN202010711300.6
申请日:2020-07-22
Applicant: 南京理工大学
IPC: C02F3/12 , C02F101/30 , C02F101/38 , C02F101/36 , C02F1/30
Abstract: 本发明属于污水处理技术领域,公开了一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法。包括以下步骤:1)将复合半导体@载体材料置于反应器中,向接种有厌氧污泥的反应器中导入废水,使废水浸没所述复合半导体@载体材料;所述复合半导体@载体材料包括导电载体以及导电载体上负载的复合半导体材料;2)对厌氧污泥进行驯化培养一段时间,使复合半导体材料的表面负载生物膜,构建光激发空穴强化生物反应器;3)利用所述反应器在光照条件下处理废水中难降解污染物。本发明的方法将半导体光催化技术与生物处理技术耦合,利用半导体材料与微生物的协同反应加强对废水中有机污染物的强化降解,大大提高降解效率。
-
-
-
-
-
-
-
-
-