一种无源多站多目标测向交叉定位与虚假点去除方法

    公开(公告)号:CN111079859B

    公开(公告)日:2020-12-04

    申请号:CN201911407781.5

    申请日:2019-12-31

    Abstract: 本发明提供一种无源多站多目标测向交叉定位与虚假点去除方法,包括如下步骤:步骤一、根据双站测向交叉定位原理,得出两两站点的双站交叉定位结果,给出交叉定位点集合;步骤二、根据真实目标附近交叉定位点密度明显高于虚假点这一特性,利用马氏距离定义椭圆邻域,提取高密度交叉定位点;步骤三、对高密度点集合进行DBSCAN聚类处理,取高密度点数最多的前NT个聚类作为真实目标所在的簇,每一簇的聚类中心即为真实目标位置,NT为目标个数。本发明利用一种高密度点提取方法,在保证目标点定位精度与虚假点去除性能的同时,降低了后续聚类数据处理的计算量。

    一种稀疏贝叶斯学习框架下混合信号DOA估计方法

    公开(公告)号:CN107436421B

    公开(公告)日:2020-11-20

    申请号:CN201710606186.9

    申请日:2017-07-24

    Abstract: 本发明公开了一种稀疏贝叶斯学习框架下混合信号DOA估计方法,属于雷达信号处理技术领域。本发明的方法步骤为:首先提出一个新的稀疏促进先验(称为高斯‑指数‑卡方先验),其概率密度函数在零点处具有尖锐谱峰并且具有重拖尾,有利于促进稀疏解;然后利用该先验建立三阶分层稀疏贝叶斯模型;接下来,利用均值场变分贝叶斯理论近似后验分布,通过对各个近似的变分分布进行交替更新迭代最小化KL距离,进而求出模型参数的估计值;最后,根据各个参数的估计值构建信号功率谱函数,进而可以得到目标辐射源的信源数估计和DOA估计。

    基于FPGA的实对称矩阵的特征值分解的并行实现方法

    公开(公告)号:CN110222307A

    公开(公告)日:2019-09-10

    申请号:CN201910504034.7

    申请日:2019-06-12

    Abstract: 本发明属于阵列信号处理领域,具体涉及基于FPGA的实对称矩阵的特征值分解的并行实现方法。具体实现步骤如下:根据阵元数目构建特征值分解的脉动阵列结构,设定所需的处理单元;对接收的阵元信号进行预处理;求解旋转角度并将其转换为角度值;查表得到对应的正弦值和余弦值;更新矩阵元素和特征向量;判断是否达到要求迭代次数;若未达到,在阵列结构中交换矩阵元素为下次迭代做准备;判断是否需要改变处理单元内部的输入输出顺序;若是,则改变输入输出数据的顺序。本方法通过处理单元之间数据的传递以及处理单元内部的数据顺序的转换,提高了迭代效率而且运算速度快,应用前景广阔。

    一种基于空-时信息的降冗余嵌套阵列设置方法

    公开(公告)号:CN109932681A

    公开(公告)日:2019-06-25

    申请号:CN201910268474.7

    申请日:2019-04-04

    Abstract: 本发明提供的是一种基于空-时信息的降冗余嵌套阵列设置方法。首先给定总阵元数N,得到原始嵌套阵列及其两个子阵阵元数N1和N2;然后利用原始嵌套阵列接收数据的空-时特性求不同阵元接收数据的互相关函数以得到等效数据模型,从而对原始嵌套阵列进行降冗余分析得到降冗余嵌套阵列;接着根据原始嵌套阵列与降冗余嵌套阵列关系得到索引集;最后根据索引集得到虚拟阵列用于波达方向估计。本发明主要解决原始嵌套阵列的虚拟阵列仅由差集构造,从而导致虚拟阵列自由度提升有限的问题。本发明提出的降冗余嵌套阵列与原始嵌套阵列相比,具有物理阵列孔径增加、虚拟阵列自由度高且虚拟阵列连续的优点,可实现更优的欠定波达方向估计。

    一种基于平移互质阵列的非圆信号波达方向估计方法

    公开(公告)号:CN109932680A

    公开(公告)日:2019-06-25

    申请号:CN201910268459.2

    申请日:2019-04-04

    Abstract: 本发明提供的是一种基于平移互质阵列的非圆信号波达方向估计方法。平移传统互质阵列得到平移互质阵列得平移互质阵列接收数据,得到扩展接收数据矢量,求该扩展接收数据矢量的协方差矩阵,向量化该协方差矩阵得到虚拟接收信号模型,对虚拟接收信号矢量进行去重排序操作后得到一个新的对应于虚拟均匀线阵的虚拟接收信号模型,取此时的虚拟接收矢量中的元素形成所需的埃尔米特矩阵即等价的协方差矩阵,对等价的协方差矩阵进行特征值分解得到噪声子空间,构造空间谱,谱峰处所对应的角度即为估计的入射信号的DOA。本发明的平移互质阵列与传统互质阵列相比,具有更大的虚拟阵列孔径以及虚拟连续自由度,可估计信源数更多,具有更优的DOA估计性能。

    一种稀疏贝叶斯学习框架下混合信号DOA估计方法

    公开(公告)号:CN107436421A

    公开(公告)日:2017-12-05

    申请号:CN201710606186.9

    申请日:2017-07-24

    Abstract: 本发明公开了一种稀疏贝叶斯学习框架下混合信号DOA估计方法,属于雷达信号处理技术领域。本发明的方法步骤为:首先提出一个新的稀疏促进先验(称为高斯-指数-卡方先验),其概率密度函数在零点处具有尖锐谱峰并且具有重拖尾,有利于促进稀疏解;然后利用该先验建立三阶分层稀疏贝叶斯模型;接下来,利用均值场变分贝叶斯理论近似后验分布,通过对各个近似的变分分布进行交替更新迭代最小化KL距离,进而求出模型参数的估计值;最后,根据各个参数的估计值构建信号功率谱函数,进而可以得到目标辐射源的信源数估计和DOA估计。

    立体基线宽频带微波辐射源测向装置及测向方法

    公开(公告)号:CN101109799A

    公开(公告)日:2008-01-23

    申请号:CN200710072480.2

    申请日:2007-07-06

    Abstract: 本发明提供的是一种立体基线宽频带微波辐射源测向装置及测向方法。由六个天线阵元、高频组件、瞬时测频接收机、混频器、中频放大器、本振源、数字接收机和信号处理器组成。利用天线阵元得到的微波辐射源相位信息计算出不同天线阵元间的相位差,根据微波辐射源的相位差与微波辐射源方位角和俯仰角之间的关系解算微波辐射源的方位角和俯仰角,并利用不同组天线阵求解的结果来解二维测向模糊,实现宽频带范围内微波辐射源方位角和俯仰角无模糊的同时高精度测向,并且灵活的天线阵元摆放形式可以合理安排天线阵元的位置以适应天线盘体积受限场合或天线阵元位置受限情况下应用的需要。

    一种基于卷积神经网络的SAR图像的配准方法

    公开(公告)号:CN110827332B

    公开(公告)日:2022-12-13

    申请号:CN201910951705.4

    申请日:2019-10-09

    Abstract: 本发明涉及一种基于卷积神经网络的SAR图像的配准方法领域,所述方法包括如下步骤:获取SAR参考图像及待配准SAR实时图,其中实时图与参考图像为同一区域的两幅图像;对参考图像利用BNLMF滤波器算法降噪处理,并提取SIFT特征点,构造训练用数据集,训练AlexNet卷积网络,并得到网络模型;对待配准实时图利用BNLMF滤波器算法降噪,提取SIFT特征点,构造实时图的样本集;将实时图的样本集输入到训练好的AlexNet卷积网络模型中,预测匹配关系,获得初始匹配特征点对。本发明方法能够提升数据拟合的鲁棒性,抑制积累误差对数据造成进一步的干扰,从而实现对变换矩阵的稳健估计,有效提升配准精度。

    基于FPGA的实对称矩阵的特征值分解的并行实现方法

    公开(公告)号:CN110222307B

    公开(公告)日:2022-10-28

    申请号:CN201910504034.7

    申请日:2019-06-12

    Abstract: 本发明属于阵列信号处理领域,具体涉及基于FPGA的实对称矩阵的特征值分解的并行实现方法。具体实现步骤如下:根据阵元数目构建特征值分解的脉动阵列结构,设定所需的处理单元;对接收的阵元信号进行预处理;求解旋转角度并将其转换为角度值;查表得到对应的正弦值和余弦值;更新矩阵元素和特征向量;判断是否达到要求迭代次数;若未达到,在阵列结构中交换矩阵元素为下次迭代做准备;判断是否需要改变处理单元内部的输入输出顺序;若是,则改变输入输出数据的顺序。本方法通过处理单元之间数据的传递以及处理单元内部的数据顺序的转换,提高了迭代效率而且运算速度快,应用前景广阔。

    一种三星无源融合定位体制机动目标跟踪方法

    公开(公告)号:CN113325452A

    公开(公告)日:2021-08-31

    申请号:CN202110569013.0

    申请日:2021-05-25

    Abstract: 本发明属于三卫星编队对机动目标的无源跟踪技术领域,具体涉及一种三星无源融合定位体制机动目标跟踪方法。本发明是针对三星融合定位系统提出的改进,引入了迭代并利用L‑M方法改进扩展卡尔曼滤波,可以用更少的迭代次数降低扩展卡尔曼滤波对强非线性系统进行线性化处理时产生的截断误差本发明在粒子滤波中用改进的IEKF来产生重要性密度函数,融入最新观测信息,使得产生的重要性密度函数更加贴近实际后验概率,进而提高跟踪滤波精度。本发明可以在没有高程先验信息的情况下对运动的辐射源目标进行高精度跟踪。

Patent Agency Ranking