-
公开(公告)号:CN116644751A
公开(公告)日:2023-08-25
申请号:CN202310621806.1
申请日:2023-05-30
Applicant: 哈尔滨工程大学 , 哈尔滨龙明科技有限公司
IPC: G06F40/295 , G06N3/045 , G06N3/0895 , G06N3/094 , G06N3/084
Abstract: 基于跨度对比学习的跨域命名实体识别方法、设备、存储介质和产品,属于命名实体识别技术领域,解决领域偏移及跨度边界信息学习性能低的问题。本发明的方法包括:使用预训练语言模型、对抗训练、对比学习、KL散度等技术构建基于跨度对比学习的跨域命名实体识别模型,利用实体边界信息,将顺序标签转化为全局边界矩阵,完成跨度级别的对比学习以及KL散度的计算,模型在训练过程中不断更改其中相关参数,充分考虑到了实体边界信息,学习到更多领域不变性信息,大大提高了跨域命名实体识别的性能。本发明适用于跨域命名实体的识别。
-
公开(公告)号:CN112765229B
公开(公告)日:2022-08-16
申请号:CN202011563544.0
申请日:2020-12-25
Applicant: 哈尔滨工程大学
IPC: G06F16/2458 , G06F16/215 , G06F16/951 , G01N33/00 , G06N3/04 , G06N3/08 , G06Q10/06 , G06Q50/26
Abstract: 本发明公开了一种基于多层注意力机制的空气质量推断方法,属于环境空气质量监测领域。本发明将城市划分成大小相同的网格,每个网格的空气质量受到相邻网格区域的影响,为了推断未部署空气质量监测传感器区域准确的空气质量,利用待推断区域、待推断区域周围的网格区域以及已部署传感器区域的时序数据和非时序数据,通过多层注意力机制,自适应地对不同的站点、网格区域、历史时间片数据赋予不同的权值,大大提升模型对空气质量推断的精度。
-
公开(公告)号:CN114880550A
公开(公告)日:2022-08-09
申请号:CN202210344135.4
申请日:2022-04-02
Applicant: 哈尔滨工程大学
IPC: G06F16/9535 , G06Q30/06 , G06K9/62
Abstract: 本发明提出一种融合多方面时域信息的序列推荐方法、设备和介质。本发明考虑三种时域信息来提高序列推荐的性能,构建融合多方面时域信息的序列推荐模型,模型包含三个部分,每一部分利用一种多粒度时域信息生成下一个用户可能感兴趣的物品表示。所述模型具体包括绝对时间模块,相对物品时间间隔模块和相对推荐时间间隔模块。三个模块经过有效的融合生成最终用户下一时刻感兴趣的物品表示,从而大大提高序列推荐性能。
-
公开(公告)号:CN114238755B
公开(公告)日:2024-08-02
申请号:CN202111456522.9
申请日:2021-12-01
Applicant: 哈尔滨工程大学
IPC: G06F16/9535 , G06N3/042 , G06N3/0499 , G06N3/08
Abstract: 本发明提出基于多关系发现的个性化推荐方法,本发明使用图神经网络等技术构建基于多关系发现的个性化推荐模型,利用用户个人信息和交互序列数据,构建用户社交关系图、用户交互关系图、基于个人信息的用户潜在关系图和基于交互序列的用户潜在关系图,模型训练过程中不断更新潜在关系图,充分考虑和挖掘用户间的多种关系,大大提高了个性化推荐性能。
-
公开(公告)号:CN116776880A
公开(公告)日:2023-09-19
申请号:CN202310576018.5
申请日:2023-05-19
Applicant: 哈尔滨工程大学 , 哈尔滨龙明科技有限公司
IPC: G06F40/295 , G06F40/242 , G06N5/025 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/082 , G06N3/0895
Abstract: 一种外部信息辅助的中文知识抽取方法、系统、存储介质及计算机,涉及信息抽取领域。解决现有中文中的实体识别任务困难,需要处理更多的歧义性和上下文依赖性的问题。所述方法包括:获取中文嵌套命名实体识别数据集,将所述数据集进行预处理,并划分为训练集、验证集和测试集;构建外部信息辅助的中文知识抽取模型;利用所述训练集对所述外部信息辅助的中文知识抽取模型进行训练,获取优化模型;根据所述优化模型进行解码操作,获取优化模型预测的输入序列的所有互不冲突的命名实体。本发明应用于命名实体识别领域。
-
公开(公告)号:CN115757822A
公开(公告)日:2023-03-07
申请号:CN202211405144.6
申请日:2022-11-10
Applicant: 哈尔滨工程大学 , 哈尔滨龙明科技有限公司
IPC: G06F16/36 , G06F40/295 , G06F40/30 , G06F18/214
Abstract: 本发明公开了一种基于超关系的全局数据空间链接预测方法及系统,属于知识图谱补全技术领域,其中,该方法包括:获取超关系数据集,提取超关系数据集中主三元组和附加超关系事实数据,并将超关系数据集进行预处理,以划分为训练集和测试集;构建基于超关系的全局数据空间链接预测方法;利用训练集对基于超关系的全局数据空间链接预测方法进行训练;将待预测的尾实体输入到训练好的基于超关系的全局数据空间链接预测方法中,得到全部尾实体的预测得分,再将最高预测分数作为预测尾实体。该方法提升了超关系事实之间的语义交互,还充分考虑了附加超关系事实对主三元组预测的影响,通过注意力机制设置不同超关系事实的影响权重来提升预测性能。
-
公开(公告)号:CN114781380A
公开(公告)日:2022-07-22
申请号:CN202210277553.6
申请日:2022-03-21
Applicant: 哈尔滨工程大学
IPC: G06F40/295 , G06F40/289 , G06K9/62 , G06N3/04 , G06N3/08 , G06F40/30 , G06F16/36 , G06F17/18
Abstract: 本发明提出一种融合多粒度信息的中文命名实体识别方法、设备和介质。所述方法步骤如下:(1)获取领域语料数据集,将数据集进行预处理并分为训练集、测试集、验证集;(2)提取(1)预处理后的语料数据中字符、软词、部首级预训练向量并进行融合;(3)构建融合多粒度信息的中文命名实体识别模型;(4)将(2)所得的数据输入到模型中进行训练;(5)利用(4)所得的识别模型对待识别数据进行处理与计算,得到命名实体识别结果。本发明针对中文命名实体识别存在的不足,通过融合部首级信息利用序列中字符内部固有的语义信息,利用扩展的软词模块获取了词级别的语义信息,将两者融入到字符嵌入向量中,提高了中文命名实体识别的精度。
-
公开(公告)号:CN114529081A
公开(公告)日:2022-05-24
申请号:CN202210150863.1
申请日:2022-02-18
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种时空联合的交通流量预测方法及装置,属于交通流量预测技术领域,其中,该方法包括:获取各个监测点的监测数据,将数据按照时间周期性规律进行分类并建立数据集,根据数据集构建监测站点无向图,同时将数据集划分训练集、测试集和验证集;基于监测站点无向图,构建时空联合的交通流量预测模型;利用训练集对时空联合的交通流量预测模型进行训练,得到最优时空联合的交通流量预测模型;将验证集输入到最优时空联合的交通流量预测模型中,计算未来交通流量预测值。该方法通过对时空注意力进行解耦,将数据进行更加细粒性的特征划分,充分考虑到每个监测点和每个时刻的特征,更高效的提取数据中的空间相关性和时间。
-
公开(公告)号:CN112765229A
公开(公告)日:2021-05-07
申请号:CN202011563544.0
申请日:2020-12-25
Applicant: 哈尔滨工程大学
IPC: G06F16/2458 , G06F16/215 , G06F16/951 , G01N33/00 , G06N3/04 , G06N3/08 , G06Q10/06 , G06Q50/26
Abstract: 本发明公开了一种基于多层注意力机制的空气质量推断方法,属于环境空气质量监测领域。本发明将城市划分成大小相同的网格,每个网格的空气质量受到相邻网格区域的影响,为了推断未部署空气质量监测传感器区域准确的空气质量,利用待推断区域、待推断区域周围的网格区域以及已部署传感器区域的时序数据和非时序数据,通过多层注意力机制,自适应地对不同的站点、网格区域、历史时间片数据赋予不同的权值,大大提升模型对空气质量推断的精度。
-
-
-
-
-
-
-
-