量子牧群机制自动演化PCNN的图像去噪方法

    公开(公告)号:CN112184594A

    公开(公告)日:2021-01-05

    申请号:CN202011096372.0

    申请日:2020-10-14

    Abstract: 本发明提供一种量子牧群机制自动演化PCNN的图像去噪方法,包括:根据椒盐噪声或高斯噪声的影响,得到含噪图像;对噪声污染后图像的进行强噪声滤波;计算自适应滤波窗口尺寸;建立自动演化PCNN图像滤波模型;初始化量子自私牧群的量子位置并设定参数;计算每个个体的适应值和生存价值;使用量子旋转门更新牧群领导者、牧群优势追随者、劣势追随者、牧群叛逃者以及捕食者的量子位置;判断是否达到量子牧群的最大迭代次数,是则终止迭代,返回最优参数;否则继续执行步骤六;输出牧群和捕食者的全局最优位置,并比较二者的生存价值,得出s个最优参数代入PCNN中,激活PCNN得到滤波图像并输出。本发明极大的提高了系统求解关键最优参数的效率和质量。

    一种量子雪豹机制的多无人机任务规划方法

    公开(公告)号:CN115617071B

    公开(公告)日:2024-10-18

    申请号:CN202211224098.X

    申请日:2022-10-07

    Abstract: 本发明设计了量子雪豹机制的多无人机对抗任务规划方法,每个目标都有三个任务:勘察,袭击和评估,三个任务严格按照时间顺序执行。为了实现三种任务的时间耦合,本发明设计了协同对抗和独立对抗并行使用的战斗方略,有效解决了时间约束问题。本发明设计的量子编码的雪豹量子位置演化机制,得到一种新的量子雪豹机制方法,量子雪豹中的移动追踪策略用于全局搜索,狩猎策略用于局部搜索,种群繁衍和灭绝策略用于淘汰劣等量子雪豹个体,三种策略协同优化适应度函数,克服了过去方法容易陷入局部收敛的弊端,也提升了演化机制的寻优速率。

    一种异构多无人机协同任务分配方法

    公开(公告)号:CN114815896B

    公开(公告)日:2024-09-13

    申请号:CN202210594247.5

    申请日:2022-05-27

    Abstract: 本发明公开了一种异构多无人机协同任务分配方法,包括:步骤一:建立层次化异构多无人机协同任务分配模型;步骤二:异构多无人机协同执行所分配任务;步骤三:建立层次化异构多无人机协同任务分配代价函数;步骤四:初始化量子胡蜂群并设定参数;步骤五:定义并计算量子胡蜂与食物的距离;步骤六:根据量子胡蜂与食物的距离对全部量子胡蜂排序;步骤七:量子胡蜂依同等概率执行确定性或随机性飞行运动,并在飞行过程中使用模拟量子旋转门来演化量子胡蜂的量子位置;步骤八:应用贪心选择策略,确定下一代量子胡蜂的量子位置;步骤九:演进终止判断,输出任务分配方案。本发明在简单高效低复杂度的同时具有高可扩展性。

    强冲击噪声下基于嵌套阵列的鲁棒动态测向方法

    公开(公告)号:CN112800596B

    公开(公告)日:2022-12-13

    申请号:CN202110028619.3

    申请日:2021-01-11

    Abstract: 本发明提供一种强冲击噪声下基于嵌套阵列的鲁棒动态测向方法,包括:建立动态测向模型;初始化搜索空间;初始化所有个体量子位置并设定相关参数;构造适应度函数,计算适应度函数值、平均适应度值,计算整个生态系统当前代的平均适应度值;根据量子标杆学习机制实现寻优搜索过程;判断是否达到最大迭代次数G,若达到则中止循环迭代,输出外部标杆的量子位置和位置并进入下一步;判断是否达到最大快拍数Kp,若未达到,更新下一次快拍时P个方位角的搜索空间,返回步骤三;否则,输出动态测向结果。本发明在冲击噪声下设计了加权无穷范数低阶差分矩阵,通过将嵌套阵列虚拟为均匀线阵或近似均匀线阵,并利用极大似然测向方法实现了动态测向。

    量子海狮机制的无人机群任务分配方法

    公开(公告)号:CN113608546B

    公开(公告)日:2022-11-18

    申请号:CN202110783634.9

    申请日:2021-07-12

    Abstract: 本发明提供一种量子海狮机制的无人机群任务分配方法,针对无人机群实际环境中任务分配效能较低的难题,设计了量子海狮机制求取最优任务分配矩阵,以无人机执行任务所获得的价值以及其对应付出的代价设计出效能函数,并利用无人机航程限制、任务限制、弹药限制等约束条件设计出惩罚函数,最终将效能函数与惩罚函数结合得到适应度函数。本发明考虑了设计无人机路径问题,并引入了多种无人机并分别执行多种任务,如侦察机执行侦察和战场评估任务,轰炸机执行攻击目标任务,战斗机执行侦察、攻击目标和战场评估任务。同时,利用量子海狮机制计算最优解,提高无人机群的任务分配效能。

    基于量子跳跃逃逸机制的MIMO雷达正交波形设计方法

    公开(公告)号:CN113093146B

    公开(公告)日:2022-04-29

    申请号:CN202110357188.5

    申请日:2021-04-01

    Abstract: 本发明提供一种基于量子跳跃逃逸机制的MIMO雷达正交波形设计方法,包括:建立正交多相编码信号的设计模型;初始化量子种群并设定参数;量子种群内进行杂交操作;定义并计算量子个体位置和杂交位置的适应度;确定量子种群的个体历史最优位置和全局最优位置;更新量子种群的量子位置;量子种群执行逃逸操作;确定量子种群所有量子个体的位置和杂交位置;更新量子种群的个体历史最优位置和全局最优位置;演进终止判断,输出所设计的最优正交波形。本发明通过约束互相关指标和优化自相关指标来设计正交波形;设计了量子跳跃逃逸优化机制来求解正交信号。

    一种基于量子鼠群的近场和远场源混合测向方法

    公开(公告)号:CN113552530A

    公开(公告)日:2021-10-26

    申请号:CN202110723576.0

    申请日:2021-06-29

    Abstract: 本发明公开了一种基于量子鼠群的近场和远场源混合测向方法,在获得远场源角度的基础上构建出分离算子,通过该算子可以获得远场源四阶累积量矩阵,通过四阶累积量矩阵差分获得纯净的近场源四阶累积量矩阵,并通过量子鼠群机制进行参数搜索的相关过程,解决现有的混合源测向方法存在角度模糊和远近场信号源分离方法低效的技术难题。本发明可以快速的得到较精确的混合源测向结果,并且不存在量化误差,通过四阶累积量矩阵可以扩展阵列孔径,提高测向精度,相对于传统的近场和远场源混合测向方法速度更快、精度更高、突破了现有方法的应用局限。

    一种基于Voronoi图的无人机集群路径规划方法

    公开(公告)号:CN113504793A

    公开(公告)日:2021-10-15

    申请号:CN202110783268.7

    申请日:2021-07-12

    Abstract: 本发明提供一种基于Voronoi图的无人机集群路径规划方法,本发明为解决二维栅格环境建模路径规划速率较慢,计算复杂度较大的问题,基于Voronoi图进行战场环境建模,通过减少路径中间节点,降低了算法进行节点遍历时所需的时间,同时设计出一种基于量子松鼠觅食的离散优化算法应用于路径规划,通过量子旋转门对量子松鼠的位置进行更新,更好的平衡了全局寻优能力与局部寻优能力,保证了路径规划结果的有效性。同时本发明为了适应战场环境的变化可能造成的路径失效问题,提供多条备选航迹,保证了路径的可选择性。

    基于量子海鸥演化机制加权Myriad滤波器设计方法

    公开(公告)号:CN113239628A

    公开(公告)日:2021-08-10

    申请号:CN202110611609.2

    申请日:2021-06-02

    Abstract: 本发明公开了一种基于量子海鸥演化机制加权Myriad滤波器设计方法,包括:构造通过冲击噪声信道的信号,并划分训练集和测试集;确定加权滤波器最优参数的目标函数;初始化量子海鸥机制的参数;计算适应度值,确定量子海鸥的最优量子位置;量子海鸥执行迁移操作;量子海鸥执行攻击操作并更新其量子位置;更新量子海鸥的适应度值及最优量子位置;判断是否达到最大迭代次数,若达到最大迭代次数,则终止迭代,继续往下执行;否则返回;使用具有最优权值参数和线性度参数的加权Myriad滤波器对测试集中的信号或待滤波信号进行处理。本发明结合量子计算机制和海鸥优化机制,有更好的全局收敛性和收敛速度,具有鲁棒性强,编程简单等优点。

    双链量子带电系统搜索机制的宽带压缩感知测向方法

    公开(公告)号:CN112929303A

    公开(公告)日:2021-06-08

    申请号:CN202110079030.6

    申请日:2021-01-21

    Abstract: 本发明提供一种双链量子带电系统搜索机制的宽带压缩感知测向方法,针对压缩感知中存在的网格失配问题,利用泰勒展开式进行角度修正,降低了估计误差。由于压缩感知重构算法存在着求解过程复杂,计算量大等缺点,通过采用双链编码的量子带电系统算法对模型进行极值求解简化了求解过程,解决了单链编码的量子带电系统的一些缺点和不足,可以在迭代次数少的情况下求得最优估计值。相比于传统方法,具有更高的估计精度和估计成功概率。本发明设能够有效修正网格失配问题,并且在保证允许估计精度和估计成功概率前提下,简化求解过程,较少计算量。

Patent Agency Ranking