-
公开(公告)号:CN109358313B
公开(公告)日:2023-02-10
申请号:CN201811310188.4
申请日:2018-11-06
Applicant: 哈尔滨工程大学
IPC: G01S3/28
Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于量子带电系统搜索演化机制的宽带测向方法。本发明步骤为:建立宽带信号采样模型;量子带电系统搜索演化机制参数初始化;计算所有带电粒子的适应度,按照降序方式排序;创建带电粒子的量子记忆库;更新带电粒子的带电量以及它们之间的距离;更新带电粒子的移动概率和所受合力;更新带电粒子的量子旋转角度、量子位置和速度;计算带电粒子的适应度,并按照降序方式排序,更新量子记忆库;判断是否达到最大迭代次数;输出量子带电系统全局最优量子位置映射成最优位置。本发明以量子带电系统搜索演化机制对宽带信号进行测向,减少了运算量和运算时间,提高了收敛速度和收敛精度,实现快速高精度测向。
-
公开(公告)号:CN109829237B
公开(公告)日:2022-04-05
申请号:CN201910103520.8
申请日:2019-02-01
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06N3/00 , G06N10/20 , H04B17/391
Abstract: 本发明涉及一种基于量子海鞘群的无线信道衰减模型拟合方法,具体为:设置Nakagami‑m分布的参数并获取Nakagami‑m逆累积分布的准确数据集;初始化海鞘群的量子位置及位置;对所有海鞘位置进行适应度评价,并确定食物的量子位置与位置;根据策略一或策略二依次更新选定的海鞘的量子旋转角、量子位置与位置;依次对选定的海鞘按照策略三更新量子旋转角、量子位置与位置;对所有海鞘位置进行适应度评价,并更新食物的量子位置与位置;最终输出的食物位置即为拟合方程的最佳系数,即可得到Nakagami‑m逆累积分布函数的最佳拟合方程。本发明具有更高的拟合精度、更快的拟合速度以及更广的适用范围。
-
公开(公告)号:CN113239628A
公开(公告)日:2021-08-10
申请号:CN202110611609.2
申请日:2021-06-02
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子海鸥演化机制加权Myriad滤波器设计方法,包括:构造通过冲击噪声信道的信号,并划分训练集和测试集;确定加权滤波器最优参数的目标函数;初始化量子海鸥机制的参数;计算适应度值,确定量子海鸥的最优量子位置;量子海鸥执行迁移操作;量子海鸥执行攻击操作并更新其量子位置;更新量子海鸥的适应度值及最优量子位置;判断是否达到最大迭代次数,若达到最大迭代次数,则终止迭代,继续往下执行;否则返回;使用具有最优权值参数和线性度参数的加权Myriad滤波器对测试集中的信号或待滤波信号进行处理。本发明结合量子计算机制和海鸥优化机制,有更好的全局收敛性和收敛速度,具有鲁棒性强,编程简单等优点。
-
公开(公告)号:CN110007266A
公开(公告)日:2019-07-12
申请号:CN201910324483.3
申请日:2019-04-22
Applicant: 哈尔滨工程大学
IPC: G01S3/14
Abstract: 本发明公开一种冲击噪声下的任意阵列相干源测向方法,包括:建立采样信号模型;构造真实阵列动态随机加权低阶协方差矩阵;定义内插变换矩阵T,构建虚拟阵列协方差矩阵;获得前后向空间平滑修正后的数据协方差矩阵和噪声协方差矩阵,预白化处理得到动态随机加权低阶协方差矩阵;估计信源个数,对动态随机加权协方差矩阵进行特征分解,确定信号子空间和噪声子空间;构建动态随机加权低阶协方差-空间平滑-MUSIC测向方法的谱估计公式,进行谱峰搜索,找出极大值点对应的角度,输出任意阵列相干源测向结果。本发明能够对任意阵列的信源来波方向进行有效估计,可在高斯噪声、弱冲击噪声和强冲击噪声下进行测向,解相干性能优,应用范围广泛。
-
公开(公告)号:CN109861728A
公开(公告)日:2019-06-07
申请号:CN201910128413.0
申请日:2019-02-21
Applicant: 哈尔滨工程大学
IPC: H04B7/0413 , H04B7/0456 , H04K3/00 , H04W40/22 , H04W72/04
Abstract: 本发明涉及一种大规模MIMO系统的联合多中继选择与时隙资源配置方法,发明结合量子优化机制与白蚁群优化机制的优势,利用量子白蚁群优化方法来解决Massive MIMO系统的多中继选择与时隙资源配置这一复杂的混合优化问题,具有搜索速度快、全局搜索能力强的优点。本发明结合无线能量采集技术,可显著减少Massive MIMO协作通信系统信息传输过程中的能量消耗,通过用户终端与干扰中继分别向窃听器发送干扰信号以降低窃听器的信干噪比,能够有效提高Massive MIMO系统的保密容量,保证通信系统的安全性与可靠性。
-
公开(公告)号:CN113095465A
公开(公告)日:2021-07-09
申请号:CN202110358000.9
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法,包括:建立水下无人集群任务分配模型;初始化量子熊群和人群位置;根据适应度函数计算量子熊群和人群的大马哈鱼密度;对量子熊群及人群的量子旋转角和位置进行更新;形成混合策略;判断是否到达最大迭代次数,如达到则终止迭代;如未达到,则令t=t+1,并返回步骤三继续执行;输出所得最终混合策略G、G'、它们最大值所对应的策略即为收益期望最大的策略。本发明使用量子大马哈鱼洄游机制演化博弈论对水下无人集群进行任务部署分配,通过计算各部署所得到的损失比,调整部署分配方式,并通过混合策略优劣性判别所获得的混合策略的好坏,从而输出收益期望最高的部署分配方式。
-
公开(公告)号:CN109190978A
公开(公告)日:2019-01-11
申请号:CN201811017379.1
申请日:2018-09-01
Applicant: 哈尔滨工程大学
Abstract: 一种基于量子鸟群演化机制的无人机资源分配方法,属于无人机自主控制领域。本发明方法的步骤为:建立无人机资源分配模型;确定无人机执行任务的种类,初始化量子鸟群;根据适应度函数进行适应度计算,并确定群体的全局最佳位置;通过量子旋转门和量子非门更新量子位置并测量;根据适应度函数进行适应度计算;更新每只量子鸟的局部最佳位置和整个群体的全局最佳位置;判断是否达到最大迭代次数,若达到则输出群体全局最佳位置,并映射为任务资源矩阵。本发明充分考虑到无人机执行不同任务时对资源的需要不同,以较少的时间代价获取资源配置比最优的无人机资源分配方案,同时满足无人机性能要求,得到更加合理的无人机资源分配方案。
-
公开(公告)号:CN108880734A
公开(公告)日:2018-11-23
申请号:CN201810531057.2
申请日:2018-05-29
Applicant: 哈尔滨工程大学
IPC: H04K1/00 , H04K3/00 , H04B7/0456 , H04B7/08 , H04W72/04
Abstract: 本发明提供一种量子回溯搜索优化的CCFD‑Massive MIMO系统功率分配方法,包括:建立系统模型;初始化量子种群及系统参数,经映射规则,得到量子个体的映射态;计算量子个体的适应值,将量子种群中适应值最大的量子个体记为全局最优解;通过进化和交叉策略生成新的量子个体;根据映射规则得到新生成的量子个体的映射态,计算适应值,经贪婪选择,更新量子种群及全局最优解;如果迭代次数小于预先设定的最大迭代次数,返回第四步;否则,终止迭代,输出全局最优解,得到最佳功率分配方案。本发明有效提高了频谱利用率,充分考虑了基站和用户的自干扰、互干扰,很大程度上提高了系统的保密容量,为复杂系统的功率分配问题提供了一种新的解决方法。
-
公开(公告)号:CN108614235A
公开(公告)日:2018-10-02
申请号:CN201810510981.2
申请日:2018-05-25
Applicant: 哈尔滨工程大学
IPC: G01S3/14
Abstract: 本发明提供一种多鸽群信息交互的单快拍测向方法,建立均匀线阵单快拍采样信号模型;获得单快拍极大似然方程;初始化鸽群,并将其划分为三个子鸽群;计算鸽群中鸽子位置的适应度值,确定每个子种群的局部最优位置和整个鸽群的全局最优位置;更新基本鸽群的速度和位置,产生混沌权重;反向鸽群中的鸽子根据跳转操作更新位置;更新鸽子位置;确定子鸽群中鸽子的局部最优位置和整个鸽群的全局最优位置;更新信仰空间;最终输出的鸽群全局最优位置即为来波方向估计值。本发明实现了仅对单个快拍的数据进行处理从而得到对阵列接收信号的波达方向估计,降低了DOA估计的运算量,同时提高了系统的实时性,实现了对目标来波的高精度测向。
-
公开(公告)号:CN113095465B
公开(公告)日:2023-10-17
申请号:CN202110358000.9
申请日:2021-04-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种量子大马哈鱼洄游机制演化博弈的水下无人集群任务分配方法,包括:建立水下无人集群任务分配模型;初始化量子熊群和人群位置;根据适应度函数计算量子熊群和人群的大马哈鱼密度;对量子熊群及人群的量子旋转角和位置进行更新;形成混合策略;判断是否到达最大迭代次数,如达到则终止迭代;如未达到,则令t=t+1,并返回步骤三继续执行;输出所得最终混合策略G、G'、#imgabs0#它们最大值所对应的策略即为收益期望最大的策略。本发明使用量子大马哈鱼洄游机制演化博弈论对水下无人集群进行任务部署分配,通过计算各部署所得到的损失比,调整部署分配方式,并通过混合策略优劣性判别所获得的混合策略的好坏,从而输出收益期望最高的部署分配方式。
-
-
-
-
-
-
-
-
-