-
公开(公告)号:CN119311871A
公开(公告)日:2025-01-14
申请号:CN202411222450.5
申请日:2024-09-02
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/36 , G06F18/25 , G06F18/213 , G06N3/045
Abstract: 本申请涉及舆情监测技术领域,公开一种面向噪声文本信息的检测方法及系统,所述方法包括:获取目标数据集;对目标数据集进行预处理,获取预处理后的文本特征;构成汉化文本分类模型预训练模型,其中,汉化文本分类模型预训练模型用于预处理后的文本特征,以获取文本的表示向量;构建两个结构不同的基于汉化文本分类预训练模型作为双塔模型的基分类器A和基分类器B;用相同数据集对基分类器A和基分类器B进行调整。本发明能够对双塔模型进行相互校验,对双塔模型的输出结果进行综合考量,并输出最终结果,从而有效提高整体的特定内容检测准确率。
-
公开(公告)号:CN115914046B
公开(公告)日:2024-12-13
申请号:CN202110914690.1
申请日:2021-08-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/10 , H04L43/50 , H04L65/102 , H04L65/1104 , H04L67/02
Abstract: 本申请提供一种VoIP网关识别方法、装置、设备和存储介质,该方法包括:接收识别指令,所述识别指令中携带有目标主机的IP地址;根据所述目标主机的IP地址,对所述目标主机发送探测报文,接收所述目标主机针对所述探测报文返回的探测应答消息;根据所述探测应答消息,确定所述目标主机是否属于VoIP网关。本申请通过主动探测目标主机的分析方式,来识别目标主机是否为VoIP网关,提高了识别VoIP网关的主动性和针对性。
-
公开(公告)号:CN115914046A
公开(公告)日:2023-04-04
申请号:CN202110914690.1
申请日:2021-08-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/10 , H04L43/50 , H04L65/102 , H04L65/1104 , H04L67/02
Abstract: 本申请提供一种VoIP网关识别方法、装置、设备和存储介质,该方法包括:接收识别指令,所述识别指令中携带有目标主机的IP地址;根据所述目标主机的IP地址,对所述目标主机发送探测报文,接收所述目标主机针对所述探测报文返回的探测应答消息;根据所述探测应答消息,确定所述目标主机是否属于VoIP网关。本申请通过主动探测目标主机的分析方式,来识别目标主机是否为VoIP网关,提高了识别VoIP网关的主动性和针对性。
-
公开(公告)号:CN115525758A
公开(公告)日:2022-12-27
申请号:CN202210628092.2
申请日:2022-06-06
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于SVM的特定文本大数据分析方法及系统,所述一种基于SVM的特定文本大数据分析方法包括:利用历史特定文本大数据得到历史特定文本大数据特征;利用所述历史特定文本大数据特征获取历史特定文本大数据分析结果,采用SVM的大数据分析系统的技术,全面提高特定文本的分类的准确性和覆盖率,通过在海量数据中实现对特定内容的精准分类,大大提高了特定内容分类的及时性和准确性,从而提高了系统层面对特定内容处理的流转环节,大大提高了应用系统的处理能力。
-
公开(公告)号:CN115238703A
公开(公告)日:2022-10-25
申请号:CN202210616914.5
申请日:2022-06-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/289 , G06F16/35 , G06N20/00
Abstract: 本发明涉及一种包含历史深度语义特定文本的识别方法及系统,所述一种包含历史深度语义特定文本的识别方法包括:利用历史深度语义特定文本数据进行初始处理得到历史深度语义特定文本初始数据;利用所述历史深度语义特定文本初始数据得到历史深度语义特定文本识别结果,通过大数据分析特定文本进行模型训练,并对特定内容的语义特征进行分析筛除,进而进行分类、识别及定性,提升了对于特定文本的识别准确率,避免误差的产生。
-
公开(公告)号:CN107342077A
公开(公告)日:2017-11-10
申请号:CN201710395341.7
申请日:2017-05-27
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G10L15/063 , G10L15/07 , G10L15/14 , G10L17/04 , G10L17/14 , G10L2015/0631 , G10L2015/0635
Abstract: 本发明涉及一种基于因子分析的说话人分段聚类方法及系统。该方法包括:1)提取训练语音的声学特征,训练高斯混合通用背景模型,进而训练总变化因子模型和高斯概率线性判别分析模型;2)对测试语音进行分段并提取语音片段的声学特征;3)依据高斯混合通用背景模型和总变化因子模型将提取的声学特征映射为总变化量因子,加载高斯概率线性判别分析模型,根据总变化量因子计算任意两语音片段之间的对数似然比得分;4)选择得分最高的两类进行合并,根据层次聚类的方法逐步迭代至收敛,最终输出说话人分段聚类结果。本发明将总变化因子的不确定性引入到高斯概率线性判别分析模型进行训练和打分,能够提升短时语音片段上的基于因子分析的系统性能。
-
公开(公告)号:CN105187403A
公开(公告)日:2015-12-23
申请号:CN201510498610.3
申请日:2015-08-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L29/06
CPC classification number: H04L63/1408 , H04L63/1433
Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。
-
公开(公告)号:CN118332103A
公开(公告)日:2024-07-12
申请号:CN202410507046.6
申请日:2024-04-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/34 , G06F16/35 , G06F16/33 , G06F16/332 , G06F40/30 , G06F40/284 , G06N3/0455 , G06N3/047 , G06N3/084
Abstract: 本公开提供一种主题提取方法、装置、相关设备和计算机程序产品,涉及计算机与互联网技术领域。主题提取方法包括:获取多个文本和多个热点关键词,热点关键词是从网络中获得的;根据多个热点关键词对各个文本分别进行关键词匹配,以确定各个文本中的文本关键词;通过文本关键词对多个文本进行文本聚类,以确定至少一个文本组;将每个文本组中命中热点关键词最多的文本作为文本组的主题。本公开实施例可以快速且准确的从多个文本中提取出主题信息。
-
公开(公告)号:CN116775943A
公开(公告)日:2023-09-19
申请号:CN202310498578.3
申请日:2023-05-06
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/901 , G06F16/906 , G06F18/25 , G06N3/088
Abstract: 本发明公开了一种基于图挖掘的电信异常检测方法。克服了现有技术在进行电信异常检测时检测效率低和检测不够精准等问题。检测方法对通联记录数据处理后组织成图,将图由全图划分成一系列子图,进行图表征的局部学习和全局学习,获得节点级别的本地表征和子图级别的全局表征,通过异常检测算法得到每个子图的异常得分,选取异常得分最高的部分子图,通过异常检测算法得到这些子图中每个节点的异常得分,取异常得分最大的部分节点作为最终检测结果输出。此检测方法能实现大规模图中电信异常行为高效准确的检测。
-
公开(公告)号:CN115829316A
公开(公告)日:2023-03-21
申请号:CN202211313888.5
申请日:2022-10-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06Q10/0635 , H04M3/22 , G06Q10/04 , G06Q30/018 , G06Q30/0202 , G06Q30/0201 , G06F18/214
Abstract: 本申请提供一种信息预警方法、装置、电子设备及存储介质。该方法包括:获取电话语音数据,并根据电话语音数据确定风险主叫号码和风险被叫号码;根据风险被叫号码确定风险被叫用户数据,并根据风险主叫号码确定风险主叫用户数据;获取训练用户画像和训练交易数据,并根据风险被叫用户数据、风险主叫用户数据、训练用户画像和训练交易数据训练预测模型;根据通信平台获取平台用户数据,并利用预测模型根据平台用户信息预警潜在风险用户;其中,平台用户数据,包括:平台用户画像和平台交易数据。本申请可以根据电话语音数据和平台用户数据对潜在的风险用户进行预测,从而提高筛查效率,一定程度上提高了用户交易数据的安全性。
-
-
-
-
-
-
-
-
-