基于卷积神经网络的广告骚扰传真图像检测系统及方法

    公开(公告)号:CN108460772A

    公开(公告)日:2018-08-28

    申请号:CN201810150076.0

    申请日:2018-02-13

    摘要: 本发明提供了一种基于卷积神经网络的广告骚扰传真图像检测系统及方法,包括关键字区域提取模块,所述关键字区域提取模块用于确定待检测传真图像的关键字可疑区域;神经网络置信度分析模块,所述神经网络置信度分析模块与所述关键字区域提取模块相连,所述神经网络置信度分析模块用于对所述关键字可疑区域的文字进行识别,实现传真图像的分类。本发明通过关键字区域提取模块对关键字可疑区域进行提取,自动化运行,工作效率高;通过神经网络置信度分析模块对关键字可疑区域的文字进行识别,实现广告骚扰传真的分类判断,节约时间,管控能力强,使得本发明具有工作效率高,管控能力强的特点。

    软件定义网络的网络安全性测试方法

    公开(公告)号:CN105187403B

    公开(公告)日:2018-06-12

    申请号:CN201510498610.3

    申请日:2015-08-13

    IPC分类号: H04L29/06

    摘要: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。

    基于场景变化分类和在线局部特征匹配的刚体目标跟踪方法

    公开(公告)号:CN107194310A

    公开(公告)日:2017-09-22

    申请号:CN201710213110.X

    申请日:2017-04-01

    IPC分类号: G06K9/00 G06K9/62

    摘要: 本发明涉及一种基于场景变化分类和在线局部特征匹配的刚体目标跟踪方法,其步骤包括:在初始图像中选定感兴趣的目标区域,在目标区域检测SURF特征;对每个SURF特征建立场景描述向量,通过随机的场景变化实现离线学习,得到每个SURF特征最能够适应的场景分类信息;为每个SURF特征创建分类器;在当前图像到来时,判断当前图像的场景分类,从初始图像中选取最能够适应当前场景的SURF特征,并将其与当前图像检测到的SURF特征进行基于分类器的匹配,形成匹配点对;根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明使跟踪能够保持对视频中感兴趣区域出现连续复杂变化的自适应性。