-
公开(公告)号:CN116452631A
公开(公告)日:2023-07-18
申请号:CN202310306107.8
申请日:2023-03-27
申请人: 华侨大学
摘要: 本发明涉及一种多目标跟踪方法、终端设备及存储介质,该方法中包括:读取视频信息;对视频信息中的帧图像进行目标分割,得到目标的像素级信息和表观特征信息;基于卡尔曼滤波算法对各帧图像中的轨迹进行预测;基于前一帧图像中的轨迹和当前帧图像中目标的表观特征信息,计算两者之间的外观相似度,提取外观相似度大于相似度阈值的轨迹和目标作为预匹配轨迹和预匹配目标,将预匹配目标存入匹配目标集;计算预匹配轨迹与预匹配目标之间的代价矩阵,计算未匹配轨迹与未匹配目标之间的Mask‑IoU分数,将两者融合得到最终代价矩阵;通过匈牙利算法得到轨迹匹配结果。本发明相比于现有方法可以兼具效率与性能。
-
公开(公告)号:CN116405683A
公开(公告)日:2023-07-07
申请号:CN202310449794.9
申请日:2023-04-24
申请人: 华侨大学
IPC分类号: H04N19/147 , H04N19/176 , H04N19/149 , H04N19/11 , G06N3/0464 , G06N3/08
摘要: 本发明公开了一种基于3D‑HEVC深度图模式预测的深度图编码方法、装置及可读介质,通过构建基于卷积网络的DMM模式预测模型并进行训练,得到经训练的DMM模式预测模型;将待编码深度图序列划分得到第一级别尺寸下的若干个当前待编码块,将当前待编码块输入经训练的DMM模式预测模型,输出的网络预测值为当前待编码块的编码过程中是否需要将DMM模式加入对应尺寸的全率失真代价计算列表的标签值;采用3D‑HEVC编码器对当前待编码块进行编码,在编码过程中调用网络预测值,并确定当前待编码块在对应尺寸下的最佳模式;以判断是否需要将DMM模式加入对应尺寸的全率失真代价计算列表,可避免直接将DMM模式加入全率失真代价计算列表,导致对DMM模式冗余的率失真计算过程。
-
公开(公告)号:CN111695644B
公开(公告)日:2023-04-18
申请号:CN202010794509.3
申请日:2020-08-10
申请人: 华侨大学 , 泉州市华工智能技术有限公司 , 福建医科大学附属第二医院
IPC分类号: G06V10/764 , G06V10/80 , G06V10/44 , G06V10/77 , G06V10/774 , G06V10/25 , G06V10/54
摘要: 本发明实施例公开了一种基于光密度变换的肿瘤超声图像分类方法、装置及介质,包括:步骤10、对带有分类标签的原始肿瘤超声图像进行预处理,得到预处理图像;步骤20、获取预处理图像中的感兴趣区域;步骤30、对所述感兴趣区域做两种处理分别得到纹理特征向量和形态特征向量;步骤40、将纹理特征向量进行降维处理,然后分别和对应的形态特征向量进行特征融合,得到融合向量数据;步骤50、利用分类器对一定数量的融合向量数据进行学习,得到肿瘤分类模型;步骤60、将待分类肿瘤超声图像输入肿瘤分类模型,得到分类结果。本发明公开的方法能够有效提升超声图像肿瘤良恶性预测的准确性和鲁棒性,为医生对肿瘤进行诊断提供参考,提升了医生的诊断效率。
-
公开(公告)号:CN111126310B
公开(公告)日:2023-03-24
申请号:CN201911367254.6
申请日:2019-12-26
申请人: 华侨大学
IPC分类号: G06V40/10 , G06V10/774 , G06V10/82 , G06N3/0475 , G06N3/0464 , G06N3/094
摘要: 本发明涉及一种基于场景迁移的行人性别识别方法,包括场景迁移过程与性别识别过程。本发明通过对偶生成对抗模型对来自不同场景的行人图像集进行图像迁移,减小不同数据集中行人场景的差异。利用迁移图像训练卷积神经网络,使网络模型具有较高精度的性别识别能力。本发明结合了对偶生成对抗模型用于图像迁移的优点,解决了以往基于卷积神经网络在行人性别识别问题上的不足,有效地提高了行人性别识别精度。本发明可以被广泛地应用在智能视频监控场景,大型商场的人口统计等。
-
公开(公告)号:CN115546251A
公开(公告)日:2022-12-30
申请号:CN202211279274.X
申请日:2022-10-19
申请人: 华侨大学
摘要: 本发明一种基于GIoU门限机制的在线多目标跟踪方法、设备和存储介质,提出一种加入到级联匹配过程的GIoU门限机制GIGM,以提高关联性能、解决长距离标识切换问题,当目标和检测距离较远时,GIGM可以有效防止匹配和长距离标识切换,CIoU匹配被用作第二关联策略,以获得更好和更合理的跟踪结果。即使检测目标在外观上高度相似,但当它们的位置相距很远时,GIGM可以防止该错误匹配。
-
公开(公告)号:CN115424168A
公开(公告)日:2022-12-02
申请号:CN202210975931.8
申请日:2022-08-15
申请人: 华侨大学
摘要: 本发明公开了一种基于自适应3D卷积的屏幕视频质量评价方法及装置,获取屏幕视频,基于局部视频活动度Γ(Px,y,t)对屏幕视频进行自适应分割,得到屏幕视频序列集合,屏幕视频包括参考屏幕视频和失真屏幕视频,屏幕视频序列集合包括参考屏幕视频序列集合和失真屏幕视频序列集合;通过3D卷积神经网络分别提取参考屏幕视频序列集合的参考时空卷积特征STr以及失真屏幕视频序列集合的失真时空卷积特征STd;采用双尺度卷积神经网络对参考时空卷积特征STr和失真时空卷积特征STd实现双通道时空特征融合,计算得到失真屏幕视频的质量评价分数。着重于考虑人眼视觉系统特性及屏幕视频本质信息,模拟人类视觉系统的多通道视觉处理过程,从不同角度实现对失真屏幕视频的质量预测。
-
公开(公告)号:CN111510721B
公开(公告)日:2022-11-01
申请号:CN202010278978.X
申请日:2020-04-10
申请人: 华侨大学
IPC分类号: H04N19/39 , H04N19/132 , H04N19/59 , H04N19/124 , H04N19/61
摘要: 本发明提供了一种基于空间下采样的多描述编码高质量边重建方法,包括,制作数据集:选取视频,通过空间下采样分成两个描述,在量化参数QP值设定下,编码,解码,将解码后的视频和相应的原始视频作为训练集;训练SD‑VSRnet网络:每五帧视频作为网络的输入,依次进行特征提取,恢复高频细节,像素重排,再与输入的中间帧进行跳跃连接得到重建的视频帧,逐帧重建获得最后的重建视频,实现SD‑VSRnet网络的训练。本发明提出的方法制作了适用于空间下采样的多描述编码高质量边重建的数据集,另外,采用视频超分辨率的神经网络,分别测试4种QP值,可以有效提高不同压缩程度的边缘解码视频重建质量。
-
公开(公告)号:CN114817596A
公开(公告)日:2022-07-29
申请号:CN202210390000.1
申请日:2022-04-14
申请人: 华侨大学
IPC分类号: G06F16/532 , G06F16/583 , G06V10/80 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明提出一种融合语义相似性嵌入和度量学习的跨模态图文检索方法,具体包括:首先构建特征嵌入模块抽取每个模态的深度特征,然后在图像和文本的单模态表征空间和跨模态公共表征空间通过标签域监督信息和语义一致性监督信息分别进行表征学习。同时,设计一个深度相似性度量网络对融合后的图像文本对进行相似性比较,得到相似性得分,通过语义相似性矩阵监督相似性学习。通过损失函数将模型统一到一个整体的框架内,训练可得到端到端的跨模态图文检索模型。通过实验表明,本发明能够有效解决跨模态图文检索中精确度不高的问题。
-
公开(公告)号:CN114710667A
公开(公告)日:2022-07-05
申请号:CN202210269314.6
申请日:2022-03-18
申请人: 华侨大学
IPC分类号: H04N19/107 , H04N19/11 , H04N19/96
摘要: 本发明公开了一种针对H.266/VVC屏幕内容帧内CU划分的快速预测方法及装置,通过收集屏幕内容视频建立数据库,用于训练模型;构建宽度自适应网络模型,预测两种不同尺寸CU的划分方式,预测步骤如下:先采用网络模型对64×64大小的CU进行划分方式预测,若为不划分,则停止CU的RD代价计算,若为划分,则得到4个32×32大小的CU,则采用网络模型对32×32大小的CU的划分方式进行预测,若为不划分,则停止RD的代价计算,若为四叉树划分,则得到4个16×16的CU:若为多种类型叉树划分,则需要依靠标准编码器进行计算;最后设定适当的预设阈值来提高预测准确率。本发明能够在保持H.266/VVC编码效率的前提下,有效地降低H.266/VVC屏幕内容的帧内预测编码计算复杂度。
-
公开(公告)号:CN109166160B
公开(公告)日:2022-07-01
申请号:CN201811082243.9
申请日:2018-09-17
申请人: 华侨大学
IPC分类号: G06T9/00
摘要: 本发明公开了一种采用图形预测的三维点云压缩方法,属于视频编码领域,方法包括:采用KD树对输入三维点云进行自适应分块;采用KNN算法计算编码单元内每个点的K邻近点;构建每个单元块的图并计算图形平移算子;对每个编码单元的块进行去均值,采用K‑means算法对编码单元进行自适应采样,通过求解优化问题对未采样点进行预测;利用基于KD树的块均值预测算法对每个编码单元块的均值进行预测编码;最后用算术编码器对所有量化的参数和残差进行熵编码。本发明采用图形预测,能够对庞大的三维点云数据进行有效压缩,极大地改善三维点云的传输和存储效率。
-
-
-
-
-
-
-
-
-