-
公开(公告)号:CN115086699B
公开(公告)日:2023-05-30
申请号:CN202210674561.4
申请日:2022-06-15
Applicant: 哈尔滨工业大学(深圳)
IPC: H04N21/2187 , H04N21/238 , H04N21/24 , H04L65/60 , H04L65/80
-
公开(公告)号:CN113033103B
公开(公告)日:2023-04-21
申请号:CN202110341508.8
申请日:2021-03-30
Applicant: 吉林松花江热电有限公司 , 南京遒涯信息技术有限公司 , 哈尔滨工业大学
Inventor: 李军 , 陈利 , 李华东 , 龙振华 , 程然 , 史鸿君 , 崔启生 , 代书海 , 李润龙 , 朱拓宇 , 杨小东 , 王坤 , 刘刚 , 王伦 , 魏化雷 , 刘鑫 , 李文峰 , 刘金福
IPC: G06F30/27 , F01K7/38 , G06F119/08
Abstract: 面向含两段抽汽的汽轮机组热耗曲线的确定方法,现有多抽汽点汽轮机组在运行过程中不同工况下热耗值难以确定的问题,属于汽轮机技术领域。本发明包括:固定第一段抽汽为0,第二段抽汽为最大值和最小值的实验,记录当前的最大最小热耗值,固定第二段抽汽为0,第一段抽汽为最大值和最小值的实验,记录当前的最大最小热耗值,利用抽汽量为0时的热耗值及主蒸汽流量确定主蒸汽流量与热耗值间的非线性关系,根据记录的最大最小热耗值设置线性修正系数,对确定主蒸汽流量与热耗值间的非线性关系获得汽轮机组热耗进行修正,减少确定热耗曲线所需的实验的次数。
-
公开(公告)号:CN110532681B
公开(公告)日:2023-01-31
申请号:CN201910802063.1
申请日:2019-08-28
Applicant: 哈尔滨工业大学 , 南京遒涯信息技术有限公司
IPC: G06F18/27 , G06F18/2433 , G06N3/0442 , G06N3/08
Abstract: 本发明公开了基于NARX网络‑箱线图和常模式提取的燃机异常检测方法,包括:利用训练集的数据训练NARX神经网络,得到训练数据的排温预测值以及训练好的NARX神经网络模型;计算所述排温预测值与对应的排温真实值之间的残差,将残差输入改进的箱线图算法中得到残差检测阈值;通过计算将待检测数据输入训练好的NARX神经网络模型得到的模型预测的涡轮排气温度值与实际的涡轮排气温度值之间的残差,并判断是否在残差检测阈值内。本发明解决了现有技术不能在仅仅有海量的正常历史数据的情况下的燃气轮机的异常检测问题,能够实现在线检测,对于燃气轮机的安全可靠运行有着重要意义。
-
公开(公告)号:CN110362960B
公开(公告)日:2022-11-11
申请号:CN201910735023.X
申请日:2019-08-09
Applicant: 哈尔滨工业大学 , 南京遒涯信息技术有限公司
IPC: G06F30/17 , G06F119/08
Abstract: 本发明公开了基于多胞折合平衡流形展开模型的航空发动机系统辨识方法,包括:利用多胞系统对航空发动机全飞行包线按照选定的控制参数进行多胞系统的分割,并以发动机的进口导叶IGV开度和尾喷管开度作为坐标轴进行网格划分;向航空发动机输入一个连续的阶梯信号,得到输出的实际燃油流量和航空发动机各截面的工质参数;在步骤一划分出的网格的顶点处进行折合平衡流形展开模型的参数辨识,通过步骤二中得到的实际燃油流量和航空发动机各截面的工质参数,采用动静两步法获得折合平衡流形展开模型。相比于传统的折合平衡流形展开模型,本方法极大地拓展了平衡流形展开模型的应用领域,为其在航空发动机的实际应用打下坚实的基础。
-
公开(公告)号:CN115218531A
公开(公告)日:2022-10-21
申请号:CN202210888874.X
申请日:2022-07-27
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种溴化锂结晶蓄能热泵系统,属于热泵技术领域。为了解决常规溴化锂吸收式热泵系统能源浪费,夜间供能不足,运行稳定性差和效率较低的问题。包括结晶蓄热罐、溶液腔、凝结水腔、隔热板、高位热源管路、低位热源管路、供热水管路和加热盘管;或将两组加热盘管扩展成四组,或进一步将结晶蓄热罐扩展为浓缩结晶罐和冷凝罐。包括蓄能过程和释能过程,利用溴化锂结晶蓄能方式将部分高位热能通过溴化锂溶液蒸发结晶的方式储存在晶体中,在夜间或阴天阳光不充足的情况下,晶体溶解并不断地将能量释放出来用以持续驱动热泵供能,不受外界影响,提高能源利用率,具有良好的节能效果。
-
公开(公告)号:CN115086699A
公开(公告)日:2022-09-20
申请号:CN202210674561.4
申请日:2022-06-15
Applicant: 哈尔滨工业大学(深圳)
IPC: H04N21/2187 , H04N21/238 , H04N21/24 , H04L65/60 , H04L65/80
Abstract: 本发明提供的一种基于蜂窝网络的UAV实时视频传输码率自适应系统:通过装载并配置UAV计算机,使得UAV端可以提供多条不同码率的视频流可供拉取;搭建了拥有码率自适应单元的客户端,使得系统可以每个时隙根据网络状况调整视频流的码率;在云服务器端进行内网穿透以及端口映射,实现客户端可以从云服务器端获取UAV实时拍摄的视频流。本发明系统可以实现远端用户通过蜂窝网络实时远端观看UAV拍摄的视频流;可以更好的适应UAV‑用户链路中网络带宽的波动,提供码率自适应的视频流,减小卡顿风险的同时提高带宽利用率。相比于传统固定码率视频传输的架构,码率自适应架构可以更好的应对带宽的波动。
-
公开(公告)号:CN113465930B
公开(公告)日:2022-08-05
申请号:CN202110730294.3
申请日:2021-06-29
Applicant: 哈尔滨工业大学 , 南京遒涯信息技术有限公司 , 哈尔滨仁通能源科技有限公司
Abstract: 基于混合方法的燃气轮机多传感器故障检测方法,解决了现有燃气轮机的多传感器故障检测不灵敏的问题,属于燃气轮机故障检测技术领域。本发明包括:S1、获得燃气轮机无故障时的运行数据,所述运行数据包括燃气轮机每个传感器的数据;S2、建立燃气轮机的平衡流形展开模型,利用各传感器的数据分别进行参数辨识,得到各个传感器对应的用于卡尔曼滤波估计燃气轮机的状态方程与观测方程;S3、分别利用各个传感器的测量数据及S2中对应的状态方程与观测方程对燃气轮机的状态进行最优估计,并将得到的状态量作为相应传感器的检测因子;S4、对所有传感器的检测因子进行聚类,分为两类,其中检测因子数量少的一类对应的传感器为故障传感器。
-
公开(公告)号:CN113447273B
公开(公告)日:2022-08-05
申请号:CN202110719907.3
申请日:2021-06-28
Applicant: 哈尔滨工业大学 , 南京遒涯信息技术有限公司 , 哈尔滨仁通能源科技有限公司
Abstract: 基于交叉验证的燃气轮机传感器及执行机构故障检测方法,属于燃气轮机技术领域。为解决对燃气轮机的状态监测过程中,如何实现对执行机构和传感器故障的灵敏检测与隔离的问题。本发明方法包括如下步骤:S1、故障发生后,通过传感器故障检测系统和执行机构故障检测系统,进行第一次故障检测,确定故障传感器的数量和执行机构的故障偏差量;S2、去除所有故障传感器,将未发生故障的传感器的实际测量值送至执行机构故障检测系统;同时,通过步骤S1所获得的执行机构的故障偏差量对控制系统输出至执行机构的控制量进行修复,并将其送至传感器故障检测系统;进行第二次故障检测,实现对引起燃气轮机发生故障原因的判定。主要用于对故障检测。
-
公开(公告)号:CN113232738B
公开(公告)日:2022-03-25
申请号:CN202110714593.8
申请日:2021-06-25
Applicant: 哈尔滨工业大学
IPC: B62D57/02
Abstract: 一种自适应跨越阶梯的万向机器人,属于越障机器人技术领域,本发明为解决现有越障底盘无法实现阶梯型障碍的有效跨越和行走的问题。它包括旋转凸轮、框架、摆正板、撑杆跳机构和走行机构;撑杆跳机构为:轨迹内板为底部内凹圆形板,轨迹外板为环形板,环形板外沿为方形,内沿与轨迹内板匹配,轨迹外板固定连接,轨迹外板分别与固定板固定连接,轨迹内板分别与固定板固定连接,使轨迹外板与轨迹内板之间形成空间曲槽,轨迹外板之间安装有第一螺栓,第一螺栓上套装有第一轴承,支撑杆后端穿过螺栓,螺栓穿过轴承,轴承在空间曲槽中沿曲槽轨迹运动,支撑杆中段开有限制槽,第一轴承卡装在限制槽中。用于对越障及平地速度均有较高要求的机器人底盘。
-
公开(公告)号:CN113465930A
公开(公告)日:2021-10-01
申请号:CN202110730294.3
申请日:2021-06-29
Applicant: 哈尔滨工业大学 , 南京遒涯信息技术有限公司 , 哈尔滨仁通能源科技有限公司
Abstract: 基于混合方法的燃气轮机多传感器故障检测方法,解决了现有燃气轮机的多传感器故障检测不灵敏的问题,属于燃气轮机故障检测技术领域。本发明包括:S1、获得燃气轮机无故障时的运行数据,所述运行数据包括燃气轮机每个传感器的数据;S2、建立燃气轮机的平衡流形展开模型,利用各传感器的数据分别进行参数辨识,得到各个传感器对应的用于卡尔曼滤波估计燃气轮机的状态方程与观测方程;S3、分别利用各个传感器的测量数据及S2中对应的状态方程与观测方程对燃气轮机的状态进行最优估计,并将得到的状态量作为相应传感器的检测因子;S4、对所有传感器的检测因子进行聚类,分为两类,其中检测因子数量少的一类对应的传感器为故障传感器。
-
-
-
-
-
-
-
-
-