-
公开(公告)号:CN104945002B
公开(公告)日:2017-03-29
申请号:CN201510312802.0
申请日:2015-06-09
Applicant: 哈尔滨工业大学
IPC: C04B38/00 , C04B35/495 , C04B35/622
Abstract: 一种陶瓷/树脂复合材料制备多层器件的方法,它涉及制备多层器件的方法。它要解决现有LTCC技术所存在烧结温度高、收缩率难以控制、金属电极易于与陶瓷发生界面反应以及脆性高的问题。方法:一、制备悬浊液;二、制备浆料;三、浆料除泡后进行流延成型,得陶瓷生带;四、陶瓷生带进行裁剪,采用丝网印刷的方法印制导电银浆作为电路,叠压,排胶后,得微波介质陶瓷的多孔预制体;五、树脂浸渍到多孔预制体内部,固化,脱模后,即完成。本发明的工艺温度低,在制备过程中材料没有任何收缩,避免了LTCC共烧过程中电路中的导电电极与陶瓷之间的界面反应和扩散,制备的多层器件具有较高的介电常数和较低的介电损耗,且韧性高、加工性能优良。
-
公开(公告)号:CN104693798B
公开(公告)日:2017-03-01
申请号:CN201510136852.8
申请日:2015-03-26
Applicant: 哈尔滨工业大学
Abstract: 一种高介电常数、超低介电损耗陶瓷/树脂复合材料的制备方法,它涉及一种高介电常数、超低介电损耗陶瓷/树脂复合材料的制备方法。本发明是为了解决现有方法制备的高介电常数陶瓷/树脂复合材料的介电损耗高并且工艺复杂的问题,本发明的制备方法一、微波介质陶瓷多孔预制体的制备;二、陶瓷/树脂复合材料的制备,得到高介电常数、超低介电损耗陶瓷/树脂复合材料,即完成。本发明制备的高介电常数、超低介电损耗陶瓷/树脂复合材料具有更高的介电常数和超低的介电损耗,介电常数处于6.32至24.96之间,介电损耗均低于4.9×10-3。本发明应用于在PCB基板以及嵌入型电容器领域。
-
公开(公告)号:CN106435241A
公开(公告)日:2017-02-22
申请号:CN201610726196.1
申请日:2016-08-25
Applicant: 哈尔滨工业大学
Abstract: 一种多孔Si3N4/SiC复相陶瓷增强金属基复合材料的制备方法,涉及一种陶瓷增强金属基复合材料的制备方法。本发明为了解决目前的陶瓷增强金属基复合材料热膨胀系数高以及增强体易发生团聚且较难分散均匀的技术问题。本发明:一、制备浆料;二、制备多孔Si3N4/SiC复相陶瓷;三、多孔复相陶瓷的表面改性;四、制备复合材料。本发明的多孔复相陶瓷的孔径较小,限制了复合材料中金属晶粒的长大,“细晶强化”有效提高了复合材料的综合力学性能;本发明的多孔复相陶瓷中Si3N4纳米线均匀分布;本发明的金属基复合材料中陶瓷增强体呈连续分布,使金属基复合材料有低的热膨胀系数,较高的金属含量使复合材料具有较高的热导率。
-
公开(公告)号:CN103951194B
公开(公告)日:2016-08-24
申请号:CN201410160605.7
申请日:2014-04-21
Applicant: 哈尔滨工业大学
Abstract: 一种水基流延成型制备MAS系微晶玻璃电子基板的方法,它涉及一种制备MAS系微晶玻璃电子基板的方法。本发明要解决现有制备MAS系微晶玻璃电子基板的方法中有机溶剂的使用对人体和环境有危害、生产过程存在安全隐患、生产成本较高及数据传输过程中信号接收慢的问题。本发明方法:一、制备MAS系玻璃粉体;二、MAS水基浆料的制备;三、制备玻璃生带;四、制备基板材料生坯;五、烧结。本发明方法降低对人体和环境的危害,降低生产过程中的安全隐患,成本低,解决了数据传输过程中信号接收慢的问题。本发明用于MAS系微晶玻璃电子基板的制备。
-
公开(公告)号:CN104693799A
公开(公告)日:2015-06-10
申请号:CN201510148269.9
申请日:2015-03-31
Applicant: 哈尔滨工业大学
CPC classification number: C08K9/06 , C08G73/0644 , C08K3/22 , C08L2201/08 , C08L2203/20 , C08L79/04
Abstract: 一种高频PCB基板用超低损耗树脂基复合材料及其制备方法,涉及一种陶瓷颗粒增强树脂基复合材料及其制备方法。本发明是要解决现有的树脂基复合材料的介电损耗较高的问题。该复合材料由Ni0.5Ti0.5NbO4陶瓷粉末和双酚A型氰酸酯树脂组成。方法:一、使用KH550对Ni0.5Ti0.5NbO4陶瓷粉末进行表面修饰;二、将经表面修饰的陶瓷粉末和双酚A型氰酸酯树脂单体置于油浴中搅拌,得混合物;三、将混合物倒入预热的模具中,抽真空,固化,固化过后随炉冷却至室温后脱模,即得到Ni0.5Ti0.5NbO4/CE树脂基复合材料。本发明的树脂基复合材料具有优良的介电性能,其介电常数连续可调。本发明用于复合材料领域。
-
公开(公告)号:CN103922746A
公开(公告)日:2014-07-16
申请号:CN201410160590.4
申请日:2014-04-21
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/622
Abstract: 一种水基流延成型制备致密氮化硅陶瓷材料及致密异形氮化硅陶瓷材料的方法,它涉及一种制备氮化硅陶瓷材料的方法。本发明的目的是要解决现有制备致密氮化硅陶瓷材料的方法成本高,烧结块体积小,后续加工困难,致密度低,强度差和制备致密异形氮化硅陶瓷材料致密度低和强度差的问题。致密氮化硅陶瓷材料的方法的制备方法:一、添加烧结助剂;二、制备浆料;三、制备氮化硅陶瓷生带;四、制备排胶后的氮化硅基板生坯;五、烧结。致密异形氮化硅陶瓷材料的制备方法:一、添加烧结助剂;二、制备浆料;三、制备氮化硅陶瓷生带;四、制备排胶后的异形氮化硅材料生坯;五、烧结。本发明可获得致密氮化硅陶瓷材料和致密异形氮化硅陶瓷材料。
-
公开(公告)号:CN110590990B
公开(公告)日:2021-09-21
申请号:CN201910908745.0
申请日:2019-09-25
Applicant: 哈尔滨工业大学
IPC: C08F220/56 , C08F222/38 , C08F2/44 , C08K7/20 , C08L33/26
Abstract: 本发明涉及一种超低介电常数玻璃微珠/树脂复合材料制备方法,包括如下步骤:步骤(1)将粉末状树脂单体放入模具中,玻璃微珠骨架放置其上方;步骤(2)将所述模具放入真空干燥箱中,抽真空至10Pa以下,并加热至100~130℃,使树脂单体熔化,并在毛细管力的作用下渗入玻璃微珠骨架的开孔中。本发明通过对玻璃微珠浆料中添加增稠剂的方法,获得分散稳定的玻璃微珠浆料,再通过凝胶注模和烧结制备玻璃微珠骨架。同时采用真空辅助浸渍的方法,将树脂单体浸渍到多孔骨架中,防止玻璃微珠分层,提高稳定性,获得具有超低介电常数的玻璃微珠/树脂复合材料。
-
公开(公告)号:CN110483044B
公开(公告)日:2021-08-13
申请号:CN201910907939.9
申请日:2019-09-25
Applicant: 哈尔滨工业大学
IPC: C04B35/495 , C04B35/622 , C04B35/64 , C04B41/88 , H05K1/03 , H05K3/12
Abstract: 本发明涉及陶瓷与铝超低温共烧方法及陶瓷制备方法,更具体的说是一种高Q微波介质陶瓷与铝超低温共烧方法及高Q微波介质陶瓷制备方法,采用放电等离子烧结SPS工艺对高Q微波介质陶瓷与铝之间的进行快速超低温共烧,将CuMoO4陶瓷粉体与溶剂充分混合,依次加入分散剂、粘结剂、增塑剂和消泡剂,继续混合8~12小时,得到CuMoO4的流延浆料;CuMoO4的流延浆料采用流延成型工艺制备CuMoO4生瓷带;CuMoO4生瓷带进行剪裁,剪裁完成的CuMoO4生瓷带采用丝网印刷工艺用铝浆印刷电路;对丝网印刷工艺完成的CuMoO4生瓷带进行叠压和排胶,并装入电等离子烧结SPS模具中;该高Q微波介质陶瓷在600℃以下,仅需3~5分钟即可实现与铝共烧,大幅降低了多层微波组件的烧结温度和烧结时间。
-
公开(公告)号:CN110483091B
公开(公告)日:2021-07-13
申请号:CN201910908744.6
申请日:2019-09-25
Applicant: 哈尔滨工业大学
IPC: C04B37/00 , C04B38/00 , C04B35/584
Abstract: 本发明涉及氮化硅陶瓷烧结领域,更具体的说是一种多孔氮化硅陶瓷的连接方法,包括多孔氮化硅基体Ⅰ、连接层和多孔氮化硅基体Ⅱ,所述连接层通过烧结将多孔氮化硅基体Ⅰ和多孔氮化硅基体Ⅱ相互连接,连接层生长依附于两侧的多孔氮化硅基体Ⅰ和多孔氮化硅基体Ⅱ,生长后的连接层相互穿插桥接两侧的多孔氮化硅基体Ⅰ和多孔氮化硅基体Ⅱ;可以实现多孔氮化硅陶瓷间的烧结连接,连接层的氮化硅晶粒依附于两侧待连接的多孔氮化硅基体Ⅰ和多孔氮化硅基体Ⅱ生长,而非基于连接层单独生长,因此连接层在烧结过程中未产生明显的收缩,有效解决了连接层因烧结收缩过大而开裂的问题。
-
公开(公告)号:CN108707291B
公开(公告)日:2021-05-04
申请号:CN201810612021.7
申请日:2018-06-14
Applicant: 哈尔滨工业大学
Abstract: 一种陶瓷呈连续网状分布的树脂基介质复合材料及其制备方法,所述制备方法在于,首先将陶瓷粉末表面羟基化,再将羟基化后的陶瓷粉末进行表面氨基化,然后将树脂微球进行表面磺化,接着将氨基化的陶瓷粉末和表面磺化的树脂微球置于聚乙烯亚胺溶液中搅拌,并逐滴加入戊二醛溶液,保温、清洗后烘干,得到复合粉体,将所述复合粉体置于模具,热压成型,最终获得陶瓷呈连续网状分布的树脂基介质复合材料,与现有技术比较,本发明通过改变陶瓷在树脂基体中的分布方式,使得陶瓷颗粒呈现连续的网络化分布,能够大幅度提高陶瓷颗粒之间的相互作用,进而得到具有高介电常数的树脂基介质复合材料。
-
-
-
-
-
-
-
-
-