基于量子猴群搜索机制的认知无线电功率控制方法

    公开(公告)号:CN107864507A

    公开(公告)日:2018-03-30

    申请号:CN201711173666.7

    申请日:2017-11-22

    Abstract: 本发明提供一种基于量子猴群搜索机制的认知无线电功率控制方法,建立非合作博弈的认知无线电功率控制模型,计算认知用户效用函数和,引入功率代价机制,选择需要优化的目标函数的形式;受猴群活动启发,设计量子猴群搜索机制,产生量子猴群中猴子的量子位置和数量,映射系统用户发射功率与猴群的量子位置一一对应,计算适应度值;经猴群活动中攀爬的过程更新每只猴子的最优量子位置;把猴子爬过程的最优量子位置映射为发射功率,通过猴群活动的望-跳与空翻的过程对猴子的最优位置进行更新;经数次迭代求得猴子的最优位置为最优解。本发明有更广泛的使用范围,能保证现有认知无线电系统中用户效用的提升,且用户功率的发射减少。

    一种基于特殊非均匀线阵的高效压缩感知测向方法

    公开(公告)号:CN107677988A

    公开(公告)日:2018-02-09

    申请号:CN201710810481.6

    申请日:2017-09-11

    CPC classification number: G01S3/14 G01S3/782 G01S3/802 G01S3/86

    Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于特殊非均匀线阵的高效压缩感知测向方法。本方法利用特殊非均匀线阵的结构进行阵列扩展,结合无穷范数在冲击噪声环境下对目标进行压缩感知测向,从而获得其最优角度估计值。本方法的适用环境包括冲击噪声、高斯噪声和强冲击噪声,适用于多样、恶劣的测向环境,此外所设计的无穷范数压缩感知测向方法能够对冲击噪声环境下的目标进行高精度测向,同时也可以保证测向的鲁棒性,而且本方法所设计的特殊非均匀线阵在不影响测向性能的同时具有多种天线摆放方法,适用于更苛刻的摆放位置要求,最后本方法大幅度提高了压缩感知测向方法的分辨率和测向精度,具有更广阔的应用范围。

    认知中继网络的量子化学反应优化多中继选择方法

    公开(公告)号:CN107454604A

    公开(公告)日:2017-12-08

    申请号:CN201710724612.9

    申请日:2017-08-22

    CPC classification number: Y02D70/00 Y02D70/39 H04W16/14 H04W40/22

    Abstract: 本发明提供的是一种认知中继网络的量子化学反应优化多中继选择方法。1建立认知系统中继选择模型。2初始化量子分子集合及系统参数。3对集合中所有量子分子的势能进行评价,选择势能最小的量子分子的测量态作为全局最优解。4将量子分子的动能从高到低排序,分别进行分解反应、无效碰撞、合成反应。5对新产生的量子分子的势能进行评价。若新产生的量子分子的势能最小值小于上一代势能最小值,则记为新的全局最优解。6如果迭代次数小于预先设定的最大迭代次数,返回第4步;否则输出全局最优解。本发明均衡考虑认知中继网络在有主用户和无主用户约束条件下,基于量子化学反应机制,选择令系统吞吐量最大化的中继选择方案。

    一种基于文化蚁狮机制的特殊阵列动态测向方法

    公开(公告)号:CN109212465B

    公开(公告)日:2024-01-30

    申请号:CN201811017378.7

    申请日:2018-09-01

    Abstract: 一种基于文化蚁狮机制的特殊阵列动态测向方法,属于阵列信号处理领域。本发明包括如下步骤:设置非等距双均匀阵列,初始化搜索区间和最大迭代次数,更新协方差矩阵,初始化蚁群和蚁狮群空间,计算适应度值,标记精英蚁狮,初始化信仰空间;判断迭代次数是否为文化算子参与度的整数倍,若不是,则轮盘赌选择优秀的蚁狮,蚂蚁围绕其和精英蚁狮随机游走,计算蚂蚁适应值,更新蚁狮位置和精英蚁狮位置,否则对蚁狮变异,计算变异后蚁狮适应值,选取适应值较优的一半蚁狮作为下一代蚁狮,更新信仰空间和精英蚁狮位置。本发明不仅跟踪速度快,搜索精度高,而且可扩展阵列孔径,突破信源数不能超过天线数的限制,回避传统方法对天线摆放的苛刻要求。

    一种基于量子细胞膜优化机理的空时测向方法

    公开(公告)号:CN109270485B

    公开(公告)日:2023-04-28

    申请号:CN201811017339.7

    申请日:2018-09-01

    Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于量子细胞膜优化机理的空时测向方法,包括以下步骤:获取信号时域数据、信号快拍采样和对采样数据进行时域延迟;构造极大似然估计的极大似然估计方程,进行量子物质群的初始化,并且构造适应度函数;选取精英量子个体,对精英量子个体进行局部搜索;划分量子个体类型;高浓度脂溶性量子个体自由扩散;高浓度非脂溶性量子个体运动;低浓度量子个体运动;生成新一代的量子物质群;判断是否达到最大迭代次数。本发明设计的基于量子细胞膜优化机理的空时测向方法,解决了极大似然类估计方法计算量大的难题,可快速得到较为精确的信号角度和频率的联合估计结果,易于在工程应用中实时处理。

    一种基于量子鸟群演化机制的无人机资源分配方法

    公开(公告)号:CN109190978B

    公开(公告)日:2021-11-23

    申请号:CN201811017379.1

    申请日:2018-09-01

    Abstract: 一种基于量子鸟群演化机制的无人机资源分配方法,属于无人机自主控制领域。本发明方法的步骤为:建立无人机资源分配模型;确定无人机执行任务的种类,初始化量子鸟群;根据适应度函数进行适应度计算,并确定群体的全局最佳位置;通过量子旋转门和量子非门更新量子位置并测量;根据适应度函数进行适应度计算;更新每只量子鸟的局部最佳位置和整个群体的全局最佳位置;判断是否达到最大迭代次数,若达到则输出群体全局最佳位置,并映射为任务资源矩阵。本发明充分考虑到无人机执行不同任务时对资源的需要不同,以较少的时间代价获取资源配置比最优的无人机资源分配方案,同时满足无人机性能要求,得到更加合理的无人机资源分配方案。

    基于量子杂草寻优机制的小波数字水印嵌入和提取方法

    公开(公告)号:CN107578365B

    公开(公告)日:2020-09-11

    申请号:CN201710810395.5

    申请日:2017-09-11

    Abstract: 本发明提供了一种基于量子杂草寻优机制的小波数字水印嵌入和提取方法,属于信息隐藏技术领域。具体实现过程为:对水印图像进行二值化,并对二值化后的水印图像进行加密处理。把载体图像和加密后的水印图像变换到小波域中,在载体图像分成多个嵌入点,根据量子杂草寻优机制优化的不同参数,采用加性或者乘性规则嵌入水印,然后通过小波重构变换到时域完成水印的嵌入;水印的提取方法与嵌入方法对应,把含水印图像变换到小波域,在不同的嵌入点根据不同参数提取出置乱加密后的水印,整合成完整的水印,然后变换到时域中,通过置乱恢复得到提取出来的水印。和现有方法比较,该方法的不可感知性、鲁棒性及安全性都得到了提高,更具有实用性。

    一种冲击噪声环境下基于均匀圆阵的相干信号参数估计方法

    公开(公告)号:CN109375154A

    公开(公告)日:2019-02-22

    申请号:CN201811236543.8

    申请日:2018-10-23

    Abstract: 本发明属于阵列信号处理参数估计领域,具体涉及一种冲击噪声环境下基于均匀圆阵的相干信号参数估计方法,包括以下步骤:对空间中D个信源信号进行快拍采样;对快拍采样数据做去冲击预处理;对阵列输出数据进行模式激励变换;构造稀疏重构字典集;稀疏重构得到相干信源方位角;判断是否达到最大迭代次数,若是,执行步骤七;否则令t=t+1,返回步骤五;得到稀疏重构结果,利用索引集U得到信源方位角信息,输出相干信源波达方向估计结果。本发明解决了冲击噪声环境下基于均匀圆阵的相干信号参数估计问题,使用模式激励变换和压缩感知稀疏重构思想作为参数估计的基础,所设计的方法具有计算复杂度低、计算时间短和鲁棒性高的优点。

    一种基于量子蜻蜓演化机制的宽带测向方法

    公开(公告)号:CN109212466A

    公开(公告)日:2019-01-15

    申请号:CN201811017243.0

    申请日:2018-09-01

    Abstract: 本发明提供一种基于量子蜻蜓演化机制的宽带测向方法,通过建立宽带信号采样模型,初始化量子蜻蜓演化参数,计算每只量子蜻蜓的适应度,对量子蜻蜓群体前一半更新领域半径以及邻域量子蜻蜓的相关参数,对后一半更新每只量子蜻蜓的相关参数,计算所有量子蜻蜓位置的适应度值,判断是否达到最大迭代次数,若已经达到,则量子蜻蜓群体全局最优量子位置映射成最优位置,得到宽带波达方向估计所要估计的角度。本发明对宽带信号进行测向,减少了运算量和运算时间,提高了收敛速度和收敛精度,实现高精度测向,可同时对相干源和独立源进行波达方向估计,并且具有优秀的抗噪声性能和较高的估计成功概率,测向性能要优于基于粒子群算法的宽带测向方法。

    基于量子记忆优化机制的高光谱遥感图像波段选择方法

    公开(公告)号:CN108509840A

    公开(公告)日:2018-09-07

    申请号:CN201810106446.0

    申请日:2018-02-02

    Abstract: 本发明涉及一种基于量子记忆优化机制的高光谱遥感图像波段选择方法,首先计算高光谱遥感图像所有波段的相关性向量或者相关性矩阵;对相关性向量或者相关性矩阵的每个元素求其倒数,并分别命名其为独立性向量或者独立性矩阵;依据所有波段的独立性向量或者独立性矩阵设定波段子空间独立性容量阀值,进行波段子空间划分,在每个波段子空间中选择一个波段,或从每个波段子空间内按比例选择波段,确定所选波段子集的维数;然后通过设计模拟人类认知过程的量子记忆优化机制并结合量子旋转门实现对最优波段子集的优化搜寻。本发明不仅适用于多维优化问题,同时也适用于高维优化问题,与已有算法相比分类精度高,运行时间短,更具有工程应用和推广价值。

Patent Agency Ranking