-
公开(公告)号:CN108675345A
公开(公告)日:2018-10-19
申请号:CN201810531277.5
申请日:2018-05-29
Applicant: 东北大学
CPC classification number: C01G23/08 , B01J21/063 , B01J35/004 , B82Y40/00 , C01B33/18 , C01P2002/72 , C01P2002/80 , C01P2004/04 , C01P2004/34 , C01P2004/64 , C01P2006/12 , C01P2006/80
Abstract: 本发明公开了一种二氧化钛纳米空心球的制备方法。该制备方法首先以正硅酸四乙酯为硅源,采用Stobe法制得二氧化硅微球,然后在二氧化硅微球表面包覆二氧化钛前驱物,再采用强碱腐蚀去除二氧化硅内核,最后进行煅烧和水热处理,制得锐钛矿晶型的二氧化钛纳米空心球。本发明还公开一种应用上述制备方法制备的二氧化钛纳米空心球。本发明的方法操作简单,生产成本低,过程污染小,产品产率高,重复性好,适合大规模生产。采用此方法制备的二氧化钛纳米产品纯度高,结晶良好,晶型可控,颗粒粒度细,颗粒均匀,单分散性好,粒径尺寸小,比表面积大,光催化活性高。
-
公开(公告)号:CN108640149A
公开(公告)日:2018-10-12
申请号:CN201810529196.1
申请日:2018-05-29
Applicant: 东北大学
CPC classification number: C01G23/053 , B01J20/06 , B01J20/28021 , B01J21/063 , B01J35/004 , B01J35/08 , B82Y30/00 , B82Y40/00 , C01P2002/72 , C01P2004/04 , C01P2004/34 , C01P2004/64
Abstract: 本发明公开了一种二氧化钛纳米空心球的制备方法。该制备方法首先以正硅酸四乙酯为硅源,采用Stobe法制得二氧化硅微球,然后在二氧化硅微球表面包覆二氧化钛前驱物,再采用强碱腐蚀去除二氧化硅内核,最后进行水热处理,制得表面具有片状分支结构的晶态二氧化钛纳米空心球。本发明还公开一种应用上述制备方法制备的二氧化钛纳米空心球。本发明的方法操作简单,重复性好,无需进行高温烧结,适合大规模生产,避免了二氧化钛粉体发生团聚现象,过程污染小,产品产率高,生产成本低;得到的二氧化钛纳米空心球纯度高,颗粒均匀,结晶良好,晶型可控,分散性良好,表面含有很多片状分支,比表面积大,对污染物的吸附能力以及捕获能力强,光催化效率高。
-
公开(公告)号:CN108387500A
公开(公告)日:2018-08-10
申请号:CN201810183172.5
申请日:2018-03-06
Applicant: 东北大学
IPC: G01N15/08
Abstract: 本发明涉及一种对非球形颗粒堆积体系中局部孔隙结构定量表征的方法。本发明对不同形状非球形粒子在重力作用下形成的初始疏松堆积及在施加外部机械振动条件下形成的最终致密堆积体内的孔隙结构(包括尺寸及形状)进行定量表征。在没有破坏整个堆积系统结构的前提下,通过CT逐层扫描成像数值构建粒子堆积体的实际三维结构,通过自主开发的程序计算和表征各种粒子堆积体内不同高度的局部孔隙尺寸及结构。本发明方法不仅计算准确,误差小,而且可以应用于其它不同堆积体系中。
-
公开(公告)号:CN108097181A
公开(公告)日:2018-06-01
申请号:CN201711378654.8
申请日:2017-12-19
Applicant: 东北大学
Abstract: 本发明涉及一种制备氧化铟壳结构的方法及产品,制备方法是利用在高温水热条件下,碳酸氢铵发生双水解释放出OH‑,在硫酸钠和柠檬酸的作用下,与溶液中的In3+反应生成无定型的前驱物,该前驱物以二氧化钛为模板进行沉积形成核壳结构。由于前驱物是无定型态,能够实现各向同性的沉积,从而使壳层结构均匀,前驱物经煅烧氧化处理生成氧化铟壳结构。制备的产品壳层具有多孔结构、大的比表面,能够应用在很多领域,如催化、气体传感领域等。本发明方法操作简单,条件温和,容易实现均匀的壳层包覆,并且壳层厚度可控,成本较低,适合大规模生产。
-
公开(公告)号:CN107739054A
公开(公告)日:2018-02-27
申请号:CN201711092604.3
申请日:2017-11-08
Applicant: 东北大学
IPC: C01G41/02
CPC classification number: C01G41/02 , C01P2002/72 , C01P2002/84 , C01P2004/01 , C01P2004/16 , C01P2004/32
Abstract: 本发明涉及一种三氧化钨粉末的制备方法,该制备方法包括如下步骤:向钨酸钠溶液中加入盐酸溶液和/或硝酸溶液,调节其PH至2.7-2.8并使二者混合均匀,得到前驱液;将前驱液密封在反应釜中进行反应,控制反应温度为160-180℃,反应时间为36-48小时,得到反应液,然后将反应液冷却至室温;从冷却后的反应液中分离出固体物质;对固体物质进行洗涤和烘干,得到三氧化钨粉末,该三氧化钨粉末中95%以上的三氧化钨微米颗粒的形状为椭球形。本发明首次制得含有95%以上的椭球形三氧化钨微米颗粒的三氧化钨粉末,制得的三氧化钨粉末经过性能测试具备较高的催化降解能力及优秀的气体传感性能。并且该方法利用水热法合成,操作简单,成本较低,适合大规模生产。
-
公开(公告)号:CN113578370A
公开(公告)日:2021-11-02
申请号:CN202111041693.5
申请日:2021-09-07
Applicant: 东北大学
Abstract: 本发明属于纳米材料领域,公开了一种碳材料负载的管状氮化碳光催化剂的制备方法。通过调节碳材料的质量分数得到比表面积大、活性位点多、光生载流子分离和迁移速率快、光生载流子重合率低、可见光吸收红移、光催化活性高、稳定性高的光催化剂。其制备方法包括:S1:将碳材料与氯化钠、氯化钾、氯化锂和三聚氰胺混匀放入刚玉坩埚煅烧;在上述S1中,所述碳材料的制备方法包括:(1)将柚子皮白色部分切块干燥,浸泡在KOH溶液后冷冻干燥;(2)将样品放入管式炉煅烧后用HNO3和超纯水洗涤至中性,即为碳材料;S2:将产物用超纯水和乙醇洗涤后干燥收集。本发明获得的光催化剂促进了光解水产氢性能的提升,为进一步开发高效的光催化剂提供了新思路。
-
公开(公告)号:CN113074907A
公开(公告)日:2021-07-06
申请号:CN202110343986.2
申请日:2021-03-31
Applicant: 东北大学
Abstract: 本发明涉及一种气体冲击颗粒并多位置测力变化的恒压装置,在恒定压力下可实现颗粒堆积致密化,其包括空气压缩机、气体过滤器、冷冻式干燥机、筒体、气体流量传感器、力传感器、可调泄压阀、支腿、可拆卸底部和气压传感器;其中,空气压缩机经冷冻式干燥机、气体过滤器与立式储气罐连通,立式储气罐与筒体连通,活动多孔顶板可放入筒体的内部,筒体的上端与上封头密封连接,上封头的顶部设有进气口,立式储气罐通过管道连接进气口;筒体的一侧设有略小于筒体长度且自带刻度的透视窗口;筒体的下端设有支腿,所述筒体的下底面部分可拆卸且设有可调泄压阀与带有旋转球阀的出气口。该装置实现了颗粒的紧实致密堆积,消除了气体冲击过程中因筒体内部气压不足所造成颗粒堆积不够致密的缺陷,并能多位置测量堆积颗粒内部力的变化,能完成快速准确的颗粒堆积致密化过程且堆积致密结构紧实均匀,改进气冲作用下颗粒堆积致密化的工艺,对未来相关颗粒材料的发展起关键作用。
-
公开(公告)号:CN108906040B
公开(公告)日:2020-09-15
申请号:CN201810753479.4
申请日:2018-07-10
Applicant: 东北大学
IPC: B01J23/52 , C02F1/32 , C02F101/30
Abstract: 本发明涉及一种贵金属掺杂的二氧化钛复合材料及其制备方法,其中,制备方法包括如下步骤:S1、制备金纳米球。S2、在金纳米球的表面包覆形成二氧化硅涂层。S3、在Au‑SiO2核壳纳米复合物的表面包覆形成二氧化钛前驱物涂层。S4、去除Au‑SiO2‑TiO2前驱物三元核壳纳米复合物中的SiO2内核。S5、对Au‑TiO2前驱物蛋黄结构纳米复合物进行煅烧,得到金掺杂的二氧化钛复合材料。本发明中的制备方法工艺简单易操作、生产成本低、过程污染小、适合大规模生产,制得的贵金属掺杂的二氧化钛复合材料产品纯度高、结晶良好、单分散性好、颗粒均匀,对太阳能具有较高利用率、且具有优异的光催化性能。
-
公开(公告)号:CN109540770B
公开(公告)日:2020-07-28
申请号:CN201811519368.3
申请日:2018-12-12
Applicant: 东北大学
IPC: G01N15/10
Abstract: 本发明涉及物理实验设备领域,尤其涉及考虑壁面效应的非球形颗粒曳力系数的测量装置及测量方法,该测量装置包括圆柱筒体、圆柱扩体和锥形底座,圆柱筒体放置在锥形底座的内部,锥形底座内部壁面上设置有多个不同直径的凹槽,圆柱筒体嵌入凹槽中,该测量装置还包括设有多个等径圆孔的布风板,布风板也嵌入到锥形底座内壁面的凹槽中,且与圆柱筒体的下端面平行放置;测量方法中通过调节流量计,控制圆柱筒体内气体速度,得出流体的速度uf及待测颗粒在下降过程中的颗粒倾角θ的平均值,最终进行曳力系数计算。该测量装置能够测量不同墙壁条件下的各类颗粒曳力系数,对广泛应用于能源、化工、冶金、建筑等领域的各类散体颗粒均可进行测量。
-
公开(公告)号:CN110195196B
公开(公告)日:2020-04-14
申请号:CN201910601038.7
申请日:2019-07-04
Applicant: 东北大学
IPC: C22C47/08 , C22C49/06 , C22C49/14 , C09K5/06 , C22C101/10
Abstract: 本发明涉及一种[碳纤维网‑富硅/贫硅]层状铝基复合相变储能材料及其制备装置和方法。其材料的外层是以碳纤维网增强高硅铝合金作为支撑外壳和内层是铝硅共晶合金的作为相变储能材料,其中外层碳纤维网增强高硅铝合金中硅的质量分数为80%~90%,铝的质量分数为20%~10%;内层铝硅共晶合金中硅的质量分数为12.6%,铝的质量分数为87.4%。本发明所制备的[碳纤维网‑富硅/贫硅]层状铝基复合相变储能材料表现出优异的热循环结构稳定性,从根本上解决储能材料与盛装容器的腐蚀性问题。在热循环相变储能过程中,外层的碳纤维网‑富硅层可作为外壳来支撑内部共晶铝硅相变储能合金,从而省略了铁基封装容器直接用于中高温相变蓄热装置。
-
-
-
-
-
-
-
-
-