一种可图形化的超薄硬化光刻胶介电薄膜

    公开(公告)号:CN113013022B

    公开(公告)日:2024-02-09

    申请号:CN202110197000.5

    申请日:2021-02-22

    Applicant: 南京大学

    Abstract: 本发明涉及一种可图形化的超薄硬化光刻胶介电薄膜。本发明首先采用旋涂法在衬底表面涂覆一层光刻胶,并接着利用紫外光刻对该光刻胶层进行图形化,然后用氧等离子体处理样品表面,使表层光刻胶中的酚醛树脂发生交联而硬化,形成一层仅有4至5纳米厚的硬化光刻胶薄膜,之后将样品浸泡在丙酮剥离溶剂中,未被硬化的光刻胶被溶剂溶解,而硬化光刻胶薄膜由于不溶于丙酮等有机溶剂则留在衬底上。为使硬化光刻胶薄膜继承光刻胶的图案,采用原位转移方法:将从剥离溶剂中取出的样品静置在工作台上,待溶剂完全自然挥发之后再用丙酮/异丙醇等有机溶剂对样品进行清洗即可。本发明的超薄硬化光刻胶薄膜具有可图形化、可重复堆叠、高均匀平整度等优点。

    一种防串扰自限制的超细密排晶硅纳米线制备方法

    公开(公告)号:CN113968571B

    公开(公告)日:2023-06-06

    申请号:CN202111227324.5

    申请日:2021-10-21

    Applicant: 南京大学

    Abstract: 本发明公开了一种防串扰自限制的超细密排晶硅纳米线制备方法,包括如下步骤:1)采用旋涂的方法在衬底上旋涂一层电刻胶;2)利用电子束直写对预设形状的无掩膜图案进行曝光,电刻胶变性成为二氧化硅,曝光后形成由宽激活生长区域沟道和窄密排沟道构成的闭合沟道;3)以步骤2)所形成的闭合沟道为衬底,再次利用光刻电子束直写或者掩膜板技术在所述宽激活生长区域定义横向于沟道的图案并进行显影,以定义催化剂区域;4)在定义的催化剂区域淀积一层带状的催化金属层。本发明通过激活生长逐渐转变为限制引导,能够实现100%长线率,同时更为严格地控制纳米线的直径及生长路径并具有更高地晶格质量。

    一种偏转可控的纳米线微振镜及其驱动、制备方法

    公开(公告)号:CN114137719B

    公开(公告)日:2023-03-07

    申请号:CN202111454282.9

    申请日:2021-12-01

    Applicant: 南京大学

    Abstract: 本发明公开了一种偏转可控的纳米线微振镜,包括一对导电电极、悬空于两导电电极之间的弛豫型导电纳米线以及固定在弛豫型纳米线中间的反射镜片。所述的弛豫型导电纳米线形貌包括但不限于三角形、U形、圆形以及多边形。本发明的纳米线微振镜的支撑结构由传统硅材料制成,具有优异的力学性能,可在撤销偏转力后恢复到原始形状,实现稳定应用。

    集成于纳米线的片上光谱仪及其探测器阵列的制备方法

    公开(公告)号:CN110734036B

    公开(公告)日:2022-07-26

    申请号:CN201911028756.6

    申请日:2019-10-28

    Applicant: 南京大学

    Abstract: 本发明提出一种集成于单根半导体纳米线的片上光谱仪,涉及到器件设计、器件制备方法和光谱仪工作原理等几个方面。基于半导体纳米线材料和电极金属的物性特点,合理设计集成于单根半导体纳米线的肖特基结型探测器阵列,待探测光通过设计的耦合器耦合进具有高反射率的半导体纳米线波导里面,肖特基二极管的高灵敏度以及波导增强的光和物质作用共同决定了器件具有高的光电探测率,可以探测弱光信号,从而实现芯片集成的微型光谱仪;本发明公开的这种宽光谱高探测率的片上光谱仪,能够检测微型结构、材料拉曼以及荧光,在生物医学、物联网涉及微型光谱检测领域有着重要的应用前景。

    一种制备三维超可拉伸晶态纳米线的方法

    公开(公告)号:CN110767537B

    公开(公告)日:2022-06-21

    申请号:CN201911071316.9

    申请日:2019-11-05

    Applicant: 南京大学

    Abstract: 一种制备三维超可拉伸晶态纳米线的方法,1)利用PECVD或者PVD在衬底上淀积一层绝缘介质层作为牺牲层,2)利用光刻、电子束直写定义周期台阶边缘图案,利用干法或湿法交替刻蚀工艺刻蚀介质层形成垂直台阶侧壁;3)用腐蚀性液体处理台阶表面,形成波浪形台阶;4)再次光刻电子束直写或者掩膜板技术定义垂直于台阶的图案以及刻蚀技术进行制备垂直于台阶的二次引导沟道;5)通过光刻、蒸发或者溅射工艺,局部淀积一层带状的催化金属层;6)催化金属层转变为分离的金属纳米颗粒;7)将温度降低到催化金属颗粒熔点以下,将整个结构表面淀积覆盖非晶半导体前驱体薄膜层;淀积出晶态的纳米线;纳米线将沿波浪台阶的引导沟道生长。

    一种可堆叠大面积制备的纳米线交叉点阵列阻变存储器件结构的制备方法

    公开(公告)号:CN109950393B

    公开(公告)日:2021-09-10

    申请号:CN201910191817.4

    申请日:2019-03-14

    Applicant: 南京大学

    Abstract: 本发明公开了一种可堆叠大面积制备的纳米线交叉点阵列阻变存储器件结构的制备方法,包括:利用树脂胶体材料转移法,实现硅纳米线阵列与薄膜材料的交替堆叠与交叉分布,形成三维空间的薄膜夹层硅纳米线交叉点阵列结构;交替堆叠过程中,以顶层硅纳米线为掩模,借助刻蚀设备,将网格部分无纳米线遮挡的薄膜材料刻蚀,从而得到纳米线交叉点与夹层薄膜材料的极小点接触结构,为制备忆阻器件提供准直性极强的垂直导电通道。本发明不需要引入价格昂贵的微纳操控技术(如纳米机械手臂),仅使用简单转移技术实现纳米材料的定向堆叠,同时利用硅纳米线作为掩模对薄膜材料进行精确刻蚀,可靠地制备纳米级“三明治”式点对点接触结构的电子器件。

    一种纳米锥光谱分析器件及光谱分析方法

    公开(公告)号:CN113175992A

    公开(公告)日:2021-07-27

    申请号:CN202110451210.2

    申请日:2021-04-25

    Applicant: 南京大学

    Abstract: 本发明公开了一种纳米锥光谱分析器件,包括衬底、平放于衬底上的纳米锥台及分布于所述纳米锥台上的一组电极;所述纳米锥台的顶半径记做r1,为入射光入射端口半径;所述纳米锥台的底半径记做r2,为纳米锥台的底端半径,所述纳米锥台的长度记做L;所述顶半径长度r1及底半径长度r2的数值均为数百纳米以内,长度L为数微米长,所述顶半径长度r1至多为底半径长度r2的二分之一。本发明由于其自身结构就能够将不同波长的光约束在不同位置,具备了分光能力,且硅纳米线自身也具有良好的光吸收能力,展示了纳米线自身腔模式色彩分辨能力以及线上集成宽光谱探测的潜力。

    一种可图形化的超薄硬化光刻胶介电薄膜

    公开(公告)号:CN113013022A

    公开(公告)日:2021-06-22

    申请号:CN202110197000.5

    申请日:2021-02-22

    Applicant: 南京大学

    Abstract: 本发明涉及一种可图形化的超薄硬化光刻胶介电薄膜。本发明首先采用旋涂法在衬底表面涂覆一层光刻胶,并接着利用紫外光刻对该光刻胶层进行图形化,然后用氧等离子体处理样品表面,使表层光刻胶中的酚醛树脂发生交联而硬化,形成一层仅有4至5纳米厚的硬化光刻胶薄膜,之后将样品浸泡在丙酮剥离溶剂中,未被硬化的光刻胶被溶剂溶解,而硬化光刻胶薄膜由于不溶于丙酮等有机溶剂则留在衬底上。为使硬化光刻胶薄膜继承光刻胶的图案,采用原位转移方法:将从剥离溶剂中取出的样品静置在工作台上,待溶剂完全自然挥发之后再用丙酮/异丙醇等有机溶剂对样品进行清洗即可。本发明的超薄硬化光刻胶薄膜具有可图形化、可重复堆叠、高均匀平整度等优点。

    一种植入式光电心脏起搏器及其制备方法

    公开(公告)号:CN109876297B

    公开(公告)日:2021-04-30

    申请号:CN201910169233.7

    申请日:2019-03-06

    Applicant: 南京大学

    Abstract: 本发明涉及一种植入式光电心脏起搏器及其制备方法,该制备方法直接将通过气‑液‑固(VLS)生长机制生长的径向结太阳能电池制作成光电心脏起搏器贴片或起搏线,或对其采用酸处理、超声等方法,获得可注射的纳米或微米级的光电起搏器,通过贴片、微创注射植入手术,将该光电起搏器应用在心外膜表面或注射入心肌表层,在体内接受光照时其能产生大的开路电压或电荷,实现对心肌的刺激,在无电池、无导线的条件下使心脏起搏。该发明可减少患者更换供电装置带来的身体损伤及高额的手术费用,同时减少导线穿过静脉时带来的炎症反应;且依托于半导体产业成熟的制作工艺,该光电心脏起搏器的太阳能电池结构可以进行批量生产,且成本低廉。

    一种单根纳米线多通道复用薄膜晶体管器件的制备方法

    公开(公告)号:CN107086180B

    公开(公告)日:2020-01-10

    申请号:CN201710152423.9

    申请日:2017-03-15

    Applicant: 南京大学

    Abstract: 一种单根纳米线多通道复用薄膜晶体管器件的制备方法,1)采用具有一定硬度,耐300℃温度的支撑性材料作为洁净衬底的表面;2)在衬底上通过光刻刻蚀技术制作出深度约100±10nm,8μm*2μm周期性回环的引导沟道;3)通过平面纳米线引导生长方法,使直径约50±10nm直径的晶体纳米线精确地沿着所述引导沟道生长,形成单根纳米线多通道复用形状的纳米线;4)通过光刻和蒸镀技术在纳米线特定位置的两侧制作80‑120nm厚度的金属块作为金属电极;5)利用ALD在纳米线阵列上方定义覆盖介质层;6)通过光刻热蒸发在介质层上方特定位置定义栅极,厚度为100nm。

Patent Agency Ranking