-
公开(公告)号:CN114494435A
公开(公告)日:2022-05-13
申请号:CN202210085360.0
申请日:2022-01-25
Applicant: 清华大学
Abstract: 本发明涉及一种视觉与高精地图匹配定位的快速优化方法、系统及介质,其包括:实时获取单目图像信息及GNSS信号;将所述单目图像信息进行感知处理后,得到图像感知的地图元素结果;根据所述GNSS信号得到地图中车辆周围的地图定位元素;将所述地图元素结果和所述车辆周围的地图定位元素进行地图匹配计算,得到全局六自由度位姿,作为地图匹配定位的优化结果。本发明对智能网联汽车的应用场景,能够降低定位计算复杂度,适配算力更低的计算平台。
-
公开(公告)号:CN114463504A
公开(公告)日:2022-05-10
申请号:CN202210085354.5
申请日:2022-01-25
Applicant: 清华大学
Abstract: 本发明涉及一种基于单目相机的路侧线状要素重建方法、系统及存储介质,其包括:实时获取单目图像信息及GNSS和IMU信号;将所述单目图像信息进行感知处理后,得到图像感知的地图元素结果;根据所述GNSS和IMU信号得到车辆六自由度信息;根据所述地图元素结果和所述车辆六自由度信息计算得到路侧线状要素的三维位置信息。本发明算法复杂度小,重建精度高,本发明能广泛在智能网联汽车环境构建领域中应用。
-
公开(公告)号:CN112964291A
公开(公告)日:2021-06-15
申请号:CN202110360085.4
申请日:2021-04-02
Applicant: 清华大学
Abstract: 本文公开一种传感器标定的方法、装置、计算机存储介质及终端,本发明实施例将激光雷达里点云数据与预设地图匹配,获得第一位姿数据;通过惯性导航设备(INS)获得的第二位姿数据与第一位姿数据对齐,获得第三位姿数据,保证了用于传感器标定的数据的统一,获得了时间戳同步的第一位姿数据和第三位姿数据;通过实时获得的第三位姿数据实现了在线传感器标定,为车辆轨迹估计与驾驶环境构建提供了数据支持,提升了车辆导航的准确性。
-
公开(公告)号:CN112862839A
公开(公告)日:2021-05-28
申请号:CN202110203999.X
申请日:2021-02-24
Applicant: 清华大学
Abstract: 本发明涉及一种地图要素语义分割鲁棒性增强方法和系统,其特征在于包括以下步骤:1)按照时序将车载的摄像头传感器采集到的行驶场景视频分为独立的视频帧。2)基于预设的语义分割网络对步骤1)中各独立的视频帧数据进行语义分割,得到各帧图像中各类地图要素语义分割结果对应的掩膜,并在相邻帧图像之间引入光流信息,以增强视频语义分割稳定性。本发明仅使用摄像头传感器的连续视频信息,通过光流信息将每帧语义分割结果连接,能够通过较低的成本实现鲁棒的地图要素精确识别;因此,本发明可以广泛应用于自动驾驶领域。本发明可以广泛应用于自动驾驶领域。
-
公开(公告)号:CN112712061A
公开(公告)日:2021-04-27
申请号:CN202110061311.9
申请日:2021-01-18
Applicant: 清华大学
Abstract: 本发明涉及一种适用于多方向交警指挥手势的识别方法、系统及存储介质,其包括:根据原始信息获取目标交警关节点的热图和像素坐标;基于关节点热图构造两类姿态特征,分别为上半身关节点空间特征和全身关节点共现性特征;根据两类姿态特征,基于预先建立的基于长短时记忆网络的两阶段学习框架实现身体朝向识别和交警指挥手势的识别,获得指挥方法和手势类别。本发明能同时识别出指挥方向和手势含义,具有较高的识别准确率。
-
公开(公告)号:CN111462237A
公开(公告)日:2020-07-28
申请号:CN202010258411.6
申请日:2020-04-03
Applicant: 清华大学
Abstract: 本发明涉及一种利用多源信息构建四通道虚拟图像的目标距离检测方法,其步骤:利用毫米波雷达获取原始点云数据进行信息处理,确定属于同一个目标的雷达原始点信息,得到目标尺寸和目标反射中心位置;根据雷达平面下目标的反射中心位置与单目摄像头采集到的图像中的目标中心像素位置,通过联合标定的方法寻找两种传感器的空间转换关系,同时结合时间同步,实现异步异构多源信息的关联;根据毫米波雷达与图像数据之间的关联关系,构建包含距离信息的虚拟四通道图片;根据虚拟四通道图片搭建卷积神经网络,实现目标检测。本发明能提高目标检测的距离预测能力,实现网络结构轻量化,节约计算资源,提高现有的视觉3D目标检测算法空间信息预测精度与速度。
-
公开(公告)号:CN111445578A
公开(公告)日:2020-07-24
申请号:CN202010228450.1
申请日:2020-03-27
Applicant: 清华大学
Abstract: 本发明属于地图数据处理技术领域,涉及一种地图三维道路特征识别方法和系统,包括以下步骤:S1.通过激光点云数据生成道路的二维强度特征图;S2.建立二维空间和三维空间的转换关系,将二维强度特征图转换为三维强度虚拟特征图;S3.基于深度学习算法,在三维强度虚拟特征图中获取二维标线要素的位置和形状;S4.将二维标线要素的位置和形状,基于动态模板匹配方法,转换关系转换成三维标线要素,生成带有标线要素的三维强度特征图。其与目前已有的二维强度特征图像相比具备了三维虚拟几何特征,包含了三维强度特征图像与三维激光点的对应关系,从而使标线要素在地图中更加明显,更易识别。
-
公开(公告)号:CN112731357B
公开(公告)日:2024-10-29
申请号:CN202011609084.0
申请日:2020-12-30
Applicant: 清华大学
IPC: G01S7/497
Abstract: 本发明涉及一种激光点云里程计定位误差的实时修正方法和系统,其特征在于包括以下步骤:1)从装备有激光雷达的智能网联车辆所采集的历史激光点云数据中,提取路面点云并计算得到模型参数,构建经验模型;2)采用经验模型对智能网联车辆所采集的实时激光点云数据进行实时修正,得到误差消除后的激光点云数据。本发明采用修正模型来修正激光点云里程计的累计定位误差,能够提供更准确的自车位姿估计,同时能够在线的修正激光点云里程计的误差,可以广泛应用于智能网联汽车环境感知领域。
-
公开(公告)号:CN117671143A
公开(公告)日:2024-03-08
申请号:CN202311634700.1
申请日:2023-12-01
Applicant: 清华大学
Abstract: 本发明涉及一种三维地图要素的提取方法、系统、设备及介质,其特征在于,方法包括:确定线形地图要素的表达方式;采用transformer注意力机制模型,根据提取的输入图像的深度特征和预先设定的空间视角转换嵌入量,得到空间视角转换编码;将预先设定的N个实例查询、空间视角转换编码和输入图像的深度特征至输入至transformer注意力机制模型,并基于确定的线形地图要素的表达方式,输出N个点链的预测值作为三维车道线提取结果实例提议;对三维车道线提取结果实例提议进行精细化分支,确定地图要素结构体,本发明统一了高精地图构建各流程数据传递模式,可以广泛应用于自动驾驶领域中。
-
公开(公告)号:CN111340050B
公开(公告)日:2023-04-07
申请号:CN202010228438.0
申请日:2020-03-27
Applicant: 清华大学
IPC: G06V10/46 , G06V10/44 , G06V10/774
Abstract: 本发明属于地图数据处理技术领域,涉及一种地图道路全要素特征提取方法和系统,包括以下步骤:S1.建立全要素的道路标线要素集;S2.获取地图道路图像集,并基于道路标线要素集,在道路图像集中选取部分图像生成全要素训练数据集;S3.使用图像翻译算法对训练数据集进行训练;S4.根据经过训练的训练数据集,确定标线要素的位置和形状;S5.根据标线要素的位置和形状,生成标识了全要素道路标线的图像。其实现了道路全要素模型数据库的构建,并且通过优化网络模型,将图像翻译算法应用到高精度地图的构建技术中,推动自动驾驶高精地图技术的发展。
-
-
-
-
-
-
-
-
-