一种基于静电作用的光伏板智能自清洁系统

    公开(公告)号:CN115921435A

    公开(公告)日:2023-04-07

    申请号:CN202211701870.2

    申请日:2022-12-28

    摘要: 本发明涉及一种基于静电作用的光伏板智能自清洁系统,其包括:电帘玻璃板,电帘玻璃板上排列布置有若干互相独立的透明电极,电帘玻璃板上方设有移动电极板;智能化监测系统,用于识别处理光伏板上方的图像、空气湿度和风速;移动模块,用于驱动移动电极板在电帘玻璃板上方移动;电源模块,电源模块工作模式包括直流电输出模式和交流电输出模式,交流电输出模式的交流电为两相以上的交流电,相邻的两个透明电极连接交流电中不同的相;智能控制系统。本发明能够实现多地区多场景下光伏板静电高效自清洁,保障光伏板发电效率稳定,延缓光伏板使用寿命年限,同时节约光伏运维成本。

    一种基于脱硫过程参数精准预测的循环泵智能调控方法

    公开(公告)号:CN115853793A

    公开(公告)日:2023-03-28

    申请号:CN202211633396.4

    申请日:2022-12-19

    IPC分类号: F04D15/00 G16C20/10

    摘要: 本发明涉及一种基于脱硫过程参数精准预测的循环泵智能调控方法,基于脱硫过程机理的与数据驱动相结合的SO2浓度预测模型,通过优化循环泵在不同工况下的配置,采用循环泵智能调控策略实时控制循环泵优化运行。本发明基于SO2吸收机理的数值模型以及传质单元数的模型,构建出口SO2浓度预测机理模型,并采用智能寻优算法,利用历史运行数据对关键参数进行辨识与修正,从而构建机理与数据融合的出口SO2浓度预测模型,使其在实现秒级计算的基础上,具有较高精度和较高的可解释性,满足优化调控的需要;本发明基于循环泵实际运行需求,调整了优化目标值,实现了循环泵的实时优化控制,降低循环泵优化运行的成本。

    低成本高效的污染物与CO2协同吸收-解吸解耦方法

    公开(公告)号:CN114712989B

    公开(公告)日:2023-01-03

    申请号:CN202210235430.6

    申请日:2022-03-11

    IPC分类号: B01D53/14 G05B13/04

    摘要: 本发明涉及一种低成本高效的污染物与CO2协同吸收‑解吸解耦方法,建立了不同工况下的污染物与CO2协同吸收‑解吸解耦控制优化模型,以低成本高效获得高纯度液态污染物和CO2为寻优目标,构造自适应罚函数将有约束优化问题的求解转变成无约束优化问题,实现参数的实时、精确、稳定控制;辅以烟气预洗涤降温、多级中间冷却和塔顶除雾等手段,实现污染物和CO2的高效捕集。本发明吸收过程与解吸过程解耦,进行各级温度‑pH‑液气比与富液流量‑解吸温度的协同调控,实现高效低能耗污染物和CO2的协同捕集‑再生‑浓缩,降低了现有烟气净化系统与碳捕集系统分离运行的高昂成本。

    一种基于FPGA的分布式多通道可配置电生理刺激装置

    公开(公告)号:CN114042245A

    公开(公告)日:2022-02-15

    申请号:CN202111346742.6

    申请日:2021-11-15

    IPC分类号: A61N1/36 A61B5/383 H04L67/125

    摘要: 本发明公开了一种基于FPGA的分布式多通道可配置电生理刺激装置,包括交换机,与交换机通信连接的多个上位机和多个刺激节点;每个刺激节点包括FPGA、D/A以及信号调理电路,接收的网络数据包通过FPGA解析、D/A模数转换以及信号调理电路生成电生理刺激波形;交换机通过千兆网络与每个PFGA通信,以使每个刺激节点在交换机上自由挂载,组成分布式刺激节点;上位机通过交换机对任意数量刺激通道的控制,以解决传统电生理刺激装置不够灵活、无法协同工作、无法适用于需要同时进行多组电生理实验的场景、体积与性能无法兼顾等问题。

    一种高性能无皂氟硅丙胶乳涂料及其制备方法

    公开(公告)号:CN112266681A

    公开(公告)日:2021-01-26

    申请号:CN202011211037.0

    申请日:2020-11-03

    摘要: 本发明公开了一种高性能无皂氟硅丙胶乳涂料及其制备方法,采用可逆加成链转移自由基聚合技术,采用乳液聚合体系,通过控制单体进料顺序,得到含氟单体、含硅单体分布于乳胶粒外层,苯乙烯及丙烯酸酯类单体于乳胶粒内部的嵌段共聚物。采用本方法的聚合物含氟单体可以受控地分布于外层,含硅单体位于中间层形成二次防护,故低氟含量即可达到单体共聚时相同的水接触角。所加入的含硅单体可以增强乳液应用时的耐低温性且在后期成膜过程中,硅氧烷水解产生的活性‑Si(OH)基团缩合产生更多交联点,形成更致密的乳胶膜,增强膜的强度及耐水性。