-
公开(公告)号:CN111626330A
公开(公告)日:2020-09-04
申请号:CN202010324557.6
申请日:2020-04-23
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于多尺度特征图重构和知识蒸馏的目标检测方法与系统,该方法首先利用骨干网络Darknet-53提取特征,深层特征通过上采样和浅层特征张量拼接生成多尺度特征图;然后采用特征重标定策略来自动获取特征图中每个通道的权重,依照权重提升有用的特征并抑制无用特征,再用残差模块融合顶层特征的语义信息和底层特征的细节信息;再将骨干网络中批量归一化层的γ系数引入到剪枝目标函数中进行训练,根据修剪阈值将低于阈值的γ系数所在通道从模型中去除;最后将训练好的YOLOv3基准模型作为教师网络,剪枝后的模型作为学生网络进行知识蒸馏。本发明改善了在大范围内不同大小物体检测的精度问题,同时降低了模型的计算量,提高了模型检测速度。
-
公开(公告)号:CN107292234B
公开(公告)日:2020-06-30
申请号:CN201710347401.8
申请日:2017-05-17
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于信息边缘和多模态特征的室内场景布局估计方法,针对图像用边缘检测提取直线段由此估计出图像消失点,从消失点出发做采样射线粗划分图像区域;用全卷积神经网络(FCNs)获取信息边缘图,选取图中能量较高区域并细采样产生布局候选项;基于积分几何提取图像的线段、几何上下文、深度、法向量特征;考虑布局候选项与区域级特征一元和二元的映射关系,设计布局估计的结构化回归模型,引入结构化学习算法,能量函数最小的即为室内场景布局估计。本发明逐步缩小候选项生成区域,并结合多种模态特征对布局候选项进行约束,提高了室内估计布局精度。
-
公开(公告)号:CN110852368A
公开(公告)日:2020-02-28
申请号:CN201911068737.6
申请日:2019-11-05
Applicant: 南京邮电大学
Abstract: 本发明公开了一种全局与局部特征嵌入及图文融合的情感分析方法与系统,该方法首先利用卷积神经网络提取图像的全局特征,同时利用迁移学习训练目标检测模型,对图像中携带情感的局部区域进行检测定位,提取局部区域特征并嵌入到全局特征共同训练图像情感分类模型,得到图像的情感极性概率。接着将文本表示为包含丰富语义信息的词向量,输入到可提取文本语义上下文特征的双向LSTM进行情感分类,得到文本的情感的极性概率。最后根据后期融合公式,得到图像及文本融合后的情感极性概率,进行图文情感分析。本发明能有效的关注图文的情感信息,并通过图像的全局与局部情感特征的提取以及文本信息的融合,提高图文情感分类的准确性和鲁棒性。
-
公开(公告)号:CN107341471B
公开(公告)日:2019-10-01
申请号:CN201710537393.3
申请日:2017-07-04
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于双层条件随机场的人体行为识别方法,属于计算机视觉的行为识别领域。首先,分别提取RGB‑D视频中行为动作主体的人体姿态和可能与其相互交互的物体信息特征,计算交互物体在RGB‑D视频分割后得到的各个小视频得分信息作为全局特征。然后,建模顶层条件随机场以捕捉人体行为间的高阶相关性,建模底层条件随机场以丰富人体行为内部的潜在结构,最终构建双层条件随机场的判别分类模型。接着,采用精确推理和结构化支持向量机分类器学习双层条件随机场的判别分类模型参数。最后,根据学习得到的模型参数和即得模型预测测试视频中人体行为类别。本发明在一定程度上提高了人体行为动作的识别准确度。
-
公开(公告)号:CN109977953A
公开(公告)日:2019-07-05
申请号:CN201910246900.7
申请日:2019-03-29
Applicant: 南京邮电大学
Abstract: 本发明公开了计算机视觉图像处理领域的一种基于YOLOV3的目标检测算法在嵌入式设备上的实现方法,旨在解决传统的大型图像处理设备很难在实际的应用场景中部署,获取数据周期长、处理图像数据的实时性差的问题。包括步骤:激活开发板,使其具备可使用的操作系统;安装工具包;准备YOLOV3的运行环境DARKNET框架文件,保存在darknet文件夹下;修改darknet文件夹下的配置文件Makefile中的参数使其与开发板的硬件配置相匹配;编译安装darknet;下载并保存权重文件;运行测试。本发明能够在便于安装使用的嵌入式设备上实现、适用于不同场景下并具有很高的目标检测准确率。
-
公开(公告)号:CN109815886A
公开(公告)日:2019-05-28
申请号:CN201910052953.5
申请日:2019-01-21
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于改进YOLOv3的行人和车辆检测方法及系统。本发明采用基于Darknet-33改进型YOLOv3网络作为主干网络提取特征;采用可传递的特征图尺度缩减方法,跨层融合并重用主干网络中的多尺度特征;然后采用尺度放大方法构建特征金字塔网络。训练阶段,对训练集使用K-means聚类方法以预测框和真实框的交并比作为相似度标准进行聚类选取先验框;然后依据损失函数做BBox回归和多标签分类。检测阶段,对所有检测框,根据置信度打分和IOU值采用非极大值抑制法去除冗余检测框,预测出最优的目标对象。本发明采用特征图尺度缩减融合的特征提取网络Darknet-33、特征图尺度放大迁移融合构造特征金字塔和聚类选取先验框,能提高行人和车辆检测的速度和精度。
-
公开(公告)号:CN109461188A
公开(公告)日:2019-03-12
申请号:CN201910088695.6
申请日:2019-01-30
Applicant: 南京邮电大学
IPC: G06T7/73
Abstract: 本发明公开了一种二维X射线头影测量图像解剖特征点自动定位方法,属于图像处理技术领域。首先计算X射线头影测量图像中每个解剖特征点的偏移距离图,将其和头影测量图像作为训练数据。其次,基于卷积神经网络模型构建自动编码生成对抗性网络,并将已有训练数据作为输入,训练该网络预测针对目标解剖特征点的偏移距离图。再次,当获得新的X射线头影测量图像时,将训练好的自动编码生成对抗性网络作用于新图像,以获得目标解剖特征点的偏移距离图。最后,使用回归投票方法从偏移距离图中求得目标解剖特征点坐标。本发明能自动、准确地获得二维X线头影测量图像中解剖特征点位置。
-
公开(公告)号:CN108363753A
公开(公告)日:2018-08-03
申请号:CN201810086816.9
申请日:2018-01-30
Applicant: 南京邮电大学
Abstract: 本发明公开了评论文本情感分类模型训练与情感分类方法、装置及设备,属于自然语言处理的文本情感分类领域。模型训练包括:获取评论文本、关联的主体和客体信息;基于第一层Bi-LSTM网络融入评论主体和客体注意力机制提取句子级特征表示;在基于第二层Bi-LSTM网络融入评论主体和客体注意力机制提取文档级特征表示;采用双曲正切非线性映射函数将文档级特征映射至情感类别空间,采用softmax分类,对模型中的参数进行训练,得到最优文本情感分类模型。本发明采用层次双向Bi-LSTM网络模型和注意力机制,不仅可以实现文本的上下文语义稳健感知与语义表达,还可以显著改善文本情感分类的鲁棒性,提高分类正确率。
-
公开(公告)号:CN107292234A
公开(公告)日:2017-10-24
申请号:CN201710347401.8
申请日:2017-05-17
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于信息边缘和多模态特征的室内场景布局估计方法,针对图像用边缘检测提取直线段由此估计出图像消失点,从消失点出发做采样射线粗划分图像区域;用全卷积神经网络(FCNs)获取信息边缘图,选取图中能量较高区域并细采样产生布局候选项;基于积分几何提取图像的线段、几何上下文、深度、法向量特征;考虑布局候选项与区域级特征一元和二元的映射关系,设计布局估计的结构化回归模型,引入结构化学习算法,能量函数最小的即为室内场景布局估计。本发明逐步缩小候选项生成区域,并结合多种模态特征对布局候选项进行约束,提高了室内估计布局精度。
-
公开(公告)号:CN115049709B
公开(公告)日:2024-11-12
申请号:CN202210578192.9
申请日:2022-05-26
Applicant: 南京邮电大学
IPC: G06T7/33 , G06T5/30 , G06T7/10 , G06T17/00 , G06N3/0455 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种面向脊柱微创手术导航的深度学习点云腰椎配准方法,包括:采集术前和术中的脊柱CT图像;将脊柱CT图像输入训练好的三维V型深度分割网络模型进行分割,获取术前和术中的腰椎CT图像;通过形态学方法消除腰椎CT图像中的孤立点;通过点云转换方法将消除孤立点后的术前和术中的腰椎CT图像转换为相应的腰椎三维点云集合;对术前和术中的腰椎三维点云集合进行最近邻点迭代,完成术前与术中的脊柱CT图像中的腰椎配准;本发明能够减少图像拍摄次数同时实现腰椎图像的快速配准。
-
-
-
-
-
-
-
-
-