一种过渡金属碳化物高熵陶瓷中辐照损伤势函数的机器学习构建方法

    公开(公告)号:CN118522371A

    公开(公告)日:2024-08-20

    申请号:CN202410662379.6

    申请日:2024-05-27

    Abstract: 一种过渡金属碳化物高熵陶瓷中辐照损伤势函数的机器学习构建方法,涉及势函数构建领域,适合构造用于核电站、航天等辐照服役环境的材料体系的原子间势函数。为了解决碳化物高熵陶瓷种类繁多而且材料在中子辐照后存在辐射难以表征,无法通过实验进行大规模筛选的问题。本发明依据DPGEN软件提出了一种构建过渡金属碳化物高熵陶瓷辐照损伤势函数的方法,适用于描述由八种过渡金属元素随机排列组合所形成的多元碳化物高熵陶瓷和单组元碳化物的辐照损伤行为,为碳化物高熵陶瓷体系辐照损伤的机理研究及其他力学、热学等性质的分子动力学模拟提供理论基础。可以进行低成本高效率的初步筛选,并为实验提供理论指导。

    一种晶粒生长诱导无压烧结超细晶Ti(C,N)基金属陶瓷致密化的方法

    公开(公告)号:CN115198157A

    公开(公告)日:2022-10-18

    申请号:CN202210792474.9

    申请日:2022-07-05

    Abstract: 一种晶粒生长诱导无压烧结超细晶Ti(C,N)基金属陶瓷致密化的方法,它涉及一种金属陶瓷致密化的方法。本发明的目的是解决无压烧结制备超细晶Ti(C,N)基金属陶瓷致密化困难和借助气压烧结增加制造成本的问题。方法:一、按重量份数称取50份~60份Ti(C,N)、10份~30份WC、5份~10份TaC、1份~5份VC、10份~20份金属黏结相、0.5份~3份炭黑和1份~4份聚乙烯醇;二、球磨混合;三、干燥制粒;四、模压成型;五、烧结。本发明制备的致密化的超细晶Ti(C,N)基金属陶瓷的致密度为96.67%~99%。本发明可获得一种超细晶Ti(C,N)基金属陶瓷。

    一种高强韧二硼化物-碳化物复相高熵陶瓷的制备方法和应用

    公开(公告)号:CN114262229B

    公开(公告)日:2022-09-16

    申请号:CN202210003862.4

    申请日:2022-01-04

    Abstract: 一种高强韧二硼化物‑碳化物复相高熵陶瓷的制备方法和应用,它属于陶瓷材料技术领域,具体涉及一种高强韧的二硼化物‑碳化物复相高熵陶瓷材料的制备方法和应用。本发明的目的是要解决现有单相高熵陶瓷材料烧结困难,致密度低和断裂韧性差,限制了其应用的问题。方法:制备二硼化物粉体和碳化钛的混合粉末;二、热压烧结。一种高强韧二硼化物‑碳化物复相高熵陶瓷在核反应堆和超高温领域中应用。本发明制备的复相陶瓷的致密度均大于97%,强度和韧性均得到显著提升,室温下陶瓷的硬度为35~40GPa,三点弯曲强度为800~1100MPa,断裂韧性为6~8MPa·m1/2。本发明可获得一种高强韧二硼化物‑碳化物复相高熵陶瓷。

    一种超硬五组元过渡金属碳化物单相高熵陶瓷材料及其制备方法

    公开(公告)号:CN110194667A

    公开(公告)日:2019-09-03

    申请号:CN201910553317.0

    申请日:2019-06-24

    Abstract: 一种超硬五组元过渡金属碳化物单相高熵陶瓷材料及其制备方法,本发明属于超硬陶瓷材料技术领域,具体涉及一种超硬单相高熵陶瓷材料及其制备方法。本发明的目的是要解决现有多组元碳化物的制备方法难以避开氧污染和致密度较难提高的问题。一种超硬五组元过渡金属碳化物单相高熵陶瓷材料的化学式为(Tix1Zrx2Nbx3Tax4Mx5)C。方法:一、称料;二、混合;三、煅烧;四、高温烧结;五、脱模。本发明提高了碳化物的致密度和力学性能,显著的固溶强化作用和高致密度使材料的硬度明显提升。本发明可获得一种超硬五组元过渡金属碳化物单相高熵陶瓷材料。

    氮化硼基陶瓷材料及其制备方法和应用

    公开(公告)号:CN107573079A

    公开(公告)日:2018-01-12

    申请号:CN201710909139.1

    申请日:2015-10-21

    Abstract: 本发明涉及氮化硼基陶瓷材料及其制备方法和应用。所述氮化硼基陶瓷材料由氮化硼、电熔氧化锆、碳化硅和添加剂制成。所述方法包括:一、称取原料;二、将制备复合粉末;三、制备氮化硼复合粉末;四、氮化硼基陶瓷材料预制坯体的制备;五、氮化硼基陶瓷材料的制备。本发明还涉及所述氮化硼基陶瓷材料作为薄带连铸用氮化硼基陶瓷侧封板材料的应用。本发明解决了氮化硼基复相陶材料烧结温度高和低熔点烧结助剂导致服役性能下降的技术问题,所制备的氮化硼基陶瓷材料的致密度可达到97%以上,具有优异的综合力学性能,其抗弯强度值可达到420MPa,非常适合于用作为薄带连铸用氮化硼基陶瓷侧封板材料。

    一种纳米钨酸锆粉末的制备方法

    公开(公告)号:CN106986388A

    公开(公告)日:2017-07-28

    申请号:CN201710439331.9

    申请日:2017-06-12

    CPC classification number: C01G41/00 C01P2004/61 C01P2004/62

    Abstract: 一种纳米钨酸锆粉末的制备方法,它涉及一种钨酸锆粉末的制备方法。本发明是为了解决现有方法制备的纳米钨酸锆粉末的粒径大的技术问题,方法如下:一、配置Zr4+浓度为0.02mol/L的溶液和W6+浓度为0.04mol/L的溶液;二、制备得到溶液a;三、制备溶液b;四、然后将溶液b加入到溶液a中,静置,老化处理,移除上层清液,将沉淀物进行真空抽滤,抽滤后所得产物干燥后磨细,置于箱式炉中于600℃反应2h,再于1140~1200℃反应2h后,出炉,用水淬冷,干燥研磨,即得;按本发明采用共沉淀法制备的粉末工艺简单、产品纯度高、生产成本低,本发明制备的钨酸锆粉末粒度最细d 50为770nm,d 90为1.73μm。本发明属于纳米材料的技术领域。

    一种钨基难熔碳化物复合材料的低温制备方法

    公开(公告)号:CN104911384B

    公开(公告)日:2017-03-22

    申请号:CN201510354356.X

    申请日:2015-06-24

    Abstract: 一种钨基难熔碳化物复合材料的低温制备方法,它涉及一种复合材料的制备方法。它要解决现有反应熔渗法制备W基难熔碳化物超高温复合材料中有WC残余,导致复合材料高温综合性能下降,且复合材料中W相和难熔碳化物相含量不可控制的问题。将纯净的钨粉和炭黑的混合粉末球磨之后装入瓷舟,在真空环境或者氩气和氢气混合气氛中碳化即可制得不完全碳化的WC。通过控制钨粉和炭黑的比例可以控制WC的碳化程度。将制取的WC粉体通过冷等静压的方式来获得多孔坯体,在一定温度下把低熔点合金熔体,渗入到多孔坯体中,即得。其高温性能大大提高,尤其是抗热震性能和抗烧蚀性能。本发明的提出为反应熔渗法制备超高温复合材料提供了一种新的研究思路。

Patent Agency Ranking