-
公开(公告)号:CN112176719A
公开(公告)日:2021-01-05
申请号:CN202011073021.8
申请日:2020-10-09
Applicant: 哈尔滨工业大学(威海)
IPC: D06M11/77 , D06M11/38 , D06M11/64 , D06M101/40
Abstract: 本发明C/SiC壳核结构复合纤维制备方法,包括如下步骤:步骤A、原料准备:对碳纤维原料预处理,获得分散性良好、表面活性基团增加的碳纤维Ⅰ;混合熔盐原料获得混合物熔盐;由硅溶胶、炭黑和硅烷偶联剂经混合、干燥、破碎获得干凝胶和炭黑的混合粉体;步骤B、成型:将混合物熔盐与混合粉体混合获得包埋料,将碳纤维Ⅰ处于包埋料包埋下进行烧结、冷却、分离后获得C/SiC壳核结构复合纤维。本发明的制备方法采用熔盐熔解析出法,在较低温度下制备出表面SiC纳米结构壳层的C/SiC复合纤维,具有良好的壳核结构,具有良好的拉伸强度、弹性模量和吸波性能。
-
公开(公告)号:CN109219336A
公开(公告)日:2019-01-15
申请号:CN201811426965.1
申请日:2018-11-27
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: H05K9/00
CPC classification number: H05K9/0081
Abstract: 本发明提出一种基于聚氨硼烷的BN/C微纳米复合吸波材料的制备方法,包括以下步骤:步骤1、将GNFs或者CNTs均匀分散到氨硼烷溶液中,启动搅拌器搅拌,打开水浴加热器加热,温度设为90℃~100℃,反应时间为23h~25h,反应结束后即可得到聚氨硼烷和GNFs或者CNTs的混合粘稠状液体,其中所述聚氨硼烷的摩尔百分含量为20%~80%,GNFs或者CNTs的摩尔百分含量为20%~80%;步骤2、将步骤1所得的液体放在容器中进行90℃~100℃的常压蒸馏,以获得先驱体;步骤3、将上述先驱体在保护气体环境下进行烧结,烧结温度为1200℃~1400℃时,在保护气体环境下保持该温度0.5h~1.5h,即保温时间为0.5h~1.5h,之后即可得到BN/C微纳米复合吸波材料。通过上述方法制备的BN/C微纳米复合吸波材料具有良好的吸波性能。
-
公开(公告)号:CN103360041A
公开(公告)日:2013-10-23
申请号:CN201310307820.0
申请日:2013-07-22
Applicant: 哈尔滨工业大学(威海)
IPC: C04B35/19 , C04B35/622
Abstract: 本发明涉及一种碳/二硅酸锂复合陶瓷材料及其制备方法,其以SiO2、Li2O、P2O5、ZnO、CaO、K2O和碳粉为原料,各组份的质量百分比为:SiO267.6~73.6%、Li2O16.9~18.7%、P2O52.3~5.3%、ZnO0.8~3.1%、CaO1.1~2.3%、K2O1.8~5.3%、碳粉0.2~0.9%;在1400ºC-1500ºC对上述氧化物组成的玻璃混合料进行晶化热处理,制成基础玻璃体,与碳粉混合球磨后通过热压烧结,高温脱模并随炉冷却,得到碳/二硅酸锂复合陶瓷材料。该材料具有较好的机械性能,强度较高,化学稳定性好,其不同于其他二硅酸锂复合材料的地方在于它的耐磨损性能和自润滑性能较好,适于作为金刚石刀片和金刚石砂轮的修整材料使用。
-
公开(公告)号:CN119462164A
公开(公告)日:2025-02-18
申请号:CN202411588989.2
申请日:2024-11-08
Applicant: 哈尔滨工业大学(威海)
IPC: C04B35/583 , H01Q1/42 , H01Q1/28 , C04B35/622
Abstract: 本发明公开了一种片层状定向排列氮化硼陶瓷及其制备方法和应用,属于氮化硼陶瓷制备技术领域,该方法包括以下步骤:利用模板法,以石墨作为基体,在其表面交替刮涂无机胶和氮化硼粉末,加热,制备得到片层状定向排列氮化硼陶瓷。通过该方法制备得到的片层状定向排列氮化硼陶瓷能够用于战斗机尖端天线罩等航空航天领域,具有优异的高温抗氧化性能,力学性能随温度变化小的特点。
-
公开(公告)号:CN118515500A
公开(公告)日:2024-08-20
申请号:CN202410574756.0
申请日:2024-05-10
Applicant: 哈尔滨工业大学(威海)
IPC: C04B38/08 , C04B35/14 , C04B35/622 , C04B35/63
Abstract: 本发明公开了一种轻质密排二氧化硅空心球隔热材料及其制备方法与应用,属于新型隔热材料技术领域,本发明通过使用特制的SiO2空心球状结构,利用无机粘结剂进行粘合,在烧结过程中使SiO2空心球紧密结合,显著提高材料中空气的体积,解决了现有技术中使用纤维状气凝胶材料导致的强吸湿性的问题;且制备步骤简单,原料廉价易得,有利于实现规模化生产,可用于航空领域。
-
公开(公告)号:CN118475105A
公开(公告)日:2024-08-09
申请号:CN202410661624.1
申请日:2024-05-27
Applicant: 哈尔滨工业大学(威海)
IPC: H05K9/00
Abstract: 本发明公开了一种硅酸钠/活性炭复合吸波材料及其制备方法和应用,属于吸波材料技术领域,将硅酸钠和活性炭粉末加入去离子水中,通过超声和电磁搅拌得到硅酸钠‑活性炭混合溶液;将所述硅酸钠‑活性炭混合溶液进行水热反应,然后经过离心、洗涤、干燥,得到硅酸钠‑活性炭固体材料,对所述硅酸钠‑活性炭固体材料进行烧结,得到所述硅酸钠/活性炭复合吸波材料。本发明提供的一种硅酸钠/活性炭复合吸波材料的制备方法成本低、重复性好、环境友好,绿色清洁、操作简单、吸波频段可控、易于大规模生产,并且所制备的复合吸波材料可以实现对电磁波的选频吸收。
-
公开(公告)号:CN116285888B
公开(公告)日:2024-06-07
申请号:CN202310315154.9
申请日:2023-03-24
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 一种表面接枝氮原子的二氧化硅基导电复合材料的制备方法及其应用,它属于吸波材料技术领域。它要解决传统绝缘体材料二氧化硅无电磁波吸收能力的问题。方法:一、将单盐酸肼、正硅酸乙酯和N,N‑二甲基甲酰胺混匀,经加热后自然冷却,得凝胶状固体B;二、凝胶状固体B溶于无水乙醇中,经离心及干燥后,获得表面接枝氮原子的二氧化硅基导电复合材料。本发明采用一步溶剂热的方式制备材料,工艺简单成本低,工艺,绿色无污染;将二氧化硅绝缘材料通过简单的N掺杂实现导体材料的转变,材料平衡的导电性和极化效应相互配合,最终实现了高强度和宽频段的电磁波吸收性能。本发明中表面接枝氮原子的二氧化硅基导电复合材料适用于电磁波吸收材料。
-
公开(公告)号:CN116814158B
公开(公告)日:2024-05-03
申请号:CN202310887999.5
申请日:2023-07-19
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: C09D183/14 , C09D5/08 , C03C17/32
Abstract: 本发明公开了一种透波抗雨蚀自清洁材料及其应用,涉及抗雨蚀防水技术领域,所述透波抗雨蚀自清洁材料,按质量份计,原料包括:聚硼硅氧烷40‑50份,聚铝硅氧烷30‑40份,锂基硅油脂10‑20份。将透波抗雨蚀自清洁材料球磨处理、干燥后,涂覆到基体表面,对基体进行热处理,得到有机硅疏水涂层,继续热处理,得到微晶玻璃亲水涂层。采用有机前驱体法制备涂层,改善原料混合均匀程度,达到分子级别扩散,提高涂层在基体表面的涂覆性能,有机硅疏水涂层具有防水性能,继续热处理后,生成的微晶玻璃亲水涂层为无机亲水水透波涂层,该涂层不仅具有抗雨蚀性能,还可实现自清洁,上述两种涂层可实现对基材的多温度段防护。
-
公开(公告)号:CN116063082A
公开(公告)日:2023-05-05
申请号:CN202211433354.6
申请日:2022-11-16
Applicant: 哈尔滨工业大学(威海)
IPC: C04B35/628 , C04B35/52
Abstract: 本发明公开了一种氧化硅包覆石墨烯复合吸波材料及其制备方法,属于吸波材料技术领域,采用粉料‑溶液混合和球磨法结合的方式制备硅酸钠‑石墨烯悬浊液,然后采用真空干燥工艺成功获得硅酸钠‑石墨烯固体粉料,最终经过酸洗和热处理过程合成氧化硅包覆石墨烯复合吸波材料。利用氧化硅成功的调节了复合材料的阻抗匹配,氧化硅玻化层原位封闭石墨烯保证了吸波材料的耐高温性能和抗氧化性能。本发明的合成工艺重复性好,成本低,环境友好,清洁无毒,易于大规模生产,并且制备复合材料的结构和形貌有利于高温条件下电磁波吸收,为理想的可实际应用的高温复合电磁吸波材料的设计提供了有效的途径。
-
公开(公告)号:CN114889161A
公开(公告)日:2022-08-12
申请号:CN202210537132.2
申请日:2022-05-18
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 本发明提供了一种碳纤维增强树脂基复合材料一体化成形制作方法,属于碳纤维复合材料成形技术领域。本发明使用多点模具进行碳纤维预成形,使用石墨烯电热膜进行预成形件固化,在模具合模状态下对预成形件加热,同时实现碳纤维蒙皮零件的成形与固化。本发明不需要专用热压罐装置,并采用多点模具代替固定模具,解决了热压罐法生产中存在的设备占地面积大、成本高,模具制造周期长、存储难等问题,实现了碳纤维蒙皮类零件成形/固化一体化。该方法能够降低设备成本,缩短生产周期,适合航空航天领域碳纤维蒙皮类零件的生产。
-
-
-
-
-
-
-
-
-