基于二分类张量增强的多分类语义分割方法

    公开(公告)号:CN114693967B

    公开(公告)日:2023-10-31

    申请号:CN202210274049.0

    申请日:2022-03-20

    Abstract: 本发明提供一种基于二分类张量增强的多分类语义分割方法,包括步骤:将需要将分类的图片输入至原始分割网络中;由原始分割网络的特征提取部分进行特征提取,将提取的特征并行输入至N个二分类头以及中转部分;N个二分类头对输入的特征分别进行二分类处理输出N个二分类张量,中转部分输出待分类特征;将N个二分类前景分数图与待分类特征进行级联,级联张量最后送入多分类头,多分类头对输入的级联张量进行N分类处理并输出N分类张量作为最终的多分类结果。本发明可以简单地加入到多数分割网络结构中,仅带来少量的网络参数量增加。相较于直接用CE损失优化多分类头结果的方法,本发明方法能在增加少量参数消耗的情况下提升分割网络的分类性能。

    一种基于跨模态融合的视频行为识别方法

    公开(公告)号:CN116311525A

    公开(公告)日:2023-06-23

    申请号:CN202310292682.7

    申请日:2023-03-23

    Abstract: 本发明提供一种基于跨模态融合的视频行为识别方法,包括以下步骤:对视频流进行下采样处理,将下采样后的各帧图像划分为像素块,采用线性投射层计算出图像特征向量输入Transformer空间编码器得到每帧视频的图像特征序列;对惯性运动传感器数据进行分段处理,逐段地对数据采用线性映射升维再输入Transformer时序编码器传感器特征序列;将图像特征序列作为键和值向量,将传感器特征序列作为查询向量输入带掩码Transformer时间编码器得到时序融合后的多模态特征,将多模态特征输入多层感知机MLP,由MLP输出视频识别的结果。本发明通过空间编码的Transformer和时间编码的Transformer联合地从视频流数据和惯性运动传感器数据中提取时空语义特征和人体运动特征,并基于跨模态编码的Transformer方法完成行为识别。

    一种基于滤波器权重聚类的用于目标检测的CNN快速剪枝方法

    公开(公告)号:CN116245164A

    公开(公告)日:2023-06-09

    申请号:CN202310249525.8

    申请日:2023-03-15

    Abstract: 本发明提供一种基于滤波器权重聚类的用于目标检测的CNN快速剪枝方法,包括目标检测模型初始化步骤;重要性评分的指数滑动平均处理步骤得到各个滤波器的重要性评分的滑动平均值;阈值计算步骤:计算卷积层的重要性评分,再将重要性评分最低的卷积层作为本次剪枝的目标卷积层;计算目标卷积层中计算其各个滤波器的重要性评分的方差,从而得到目标卷积层的重要性评分阈值;剪枝步骤:对目标卷积层的滤波器参数向量进行聚类;在目标卷积层的每个簇中,对重要性评分的滑动平均值最低且重要性评分的滑动平均值低于重要性评分阈值的滤波器进行剪枝。本发明在保证整体剪枝效果不降低的条件下,提升了用于目标检测的卷积神经网络滤波器剪枝的效率。

    一种基于深度学习的盐体语义分割方法及语义分割系统

    公开(公告)号:CN110930409B

    公开(公告)日:2022-10-14

    申请号:CN201910998936.0

    申请日:2019-10-18

    Abstract: 本发明公开了一种基于深度学习的盐体语义分割方法及语义分割模型,采用预处理模型做基础模型进行特征提取,得到的特征图经过分类监督模块预测图片有盐与否作为辅助监督加速收敛,同时监督盐体分割分支模块输出的含盐图片分割结果和整体分割分支模块输出的所有图片分割结果,边缘预测模块输出边缘预测结果,组成混合损失有效提高盐体分割精度,最终得到较好的语义分割结果。语义分割模型中每级上采样的特征图经过特征融合模块,将每级上采样的特征图与上一级上采样特征图级联,这样逐级加强特征通道信息的密集获取,更好的利用每级上采样的特征图信息,更好的融合高层的语义信息和底层的空间信息。

    一种改进的平行四边形候选框的文本检测方法

    公开(公告)号:CN110674802B

    公开(公告)日:2022-10-14

    申请号:CN201910857582.8

    申请日:2019-09-09

    Abstract: 本发明提出一种改进的平行四边形候选框的文本检测方法,在训练步骤以及检测步骤中,预测特征谱在进入PriorBox层之前先经过偏移学习模块,所述偏移学习模块用于输出预测特征谱以及候选框在Y轴方向的偏移量至PriorBox层;PriorBox层输出的候选框坐标包括矩形候选框坐标与引入偏移的平行四边形候选框;使用平行四边形的候选框来贴近标签GroundTruth,以提升GroundTruth与预测框之间的IoU,从而降低网络回归的困难程度。本发明能准确定位倾斜的长文本,适用于书籍文字识别、然场景下多方向文字识别。

Patent Agency Ranking