基于多时序属性元素深度特征的小麦重度病害预测方法

    公开(公告)号:CN109064460B

    公开(公告)日:2021-09-28

    申请号:CN201810865344.7

    申请日:2018-08-01

    Abstract: 本发明涉及基于多时序属性元素深度特征的小麦重度病害预测方法,与现有技术相比解决了无法针对小麦重度病害进行预测的缺陷。本发明包括以下步骤:基础数据的获取;小麦重度病害预测模型的构建;时序信息存储网络和深度卷积神经网络的联合训练;待预测图像和待预测环境信息数据的获取;小麦重度病害的预测。本发明从小麦病害发生的时序维度上图像、环境等多种特征因素出发,利用时序信息存储网络以及深度特征提取网络融合小麦重度病害多时序属性元素,自动学习和获知数据序列中不同时间段小麦病害的程度,从而实现针对于小麦重度病害的预测。

    基于太赫兹光谱与深度自动编码器的土壤重金属元素含量预测方法

    公开(公告)号:CN107179291B

    公开(公告)日:2020-02-14

    申请号:CN201710325019.7

    申请日:2017-05-10

    Abstract: 本发明涉及基于太赫兹光谱与深度自动编码器的土壤重金属元素含量预测方法,与现有技术相比解决了无法对土壤成分进行大批量综合分析概括的缺陷。本发明包括以下步骤:土壤样本的获取和预处理;构造基于深度自动编码器的预测模型,在模型构造上采用去噪自动编码器和压缩编码器堆叠形成深度自动编码器预测模型;深度自动编码器预测模型的训练,将训练样本的太赫兹光谱数据输入深度自动编码器预测模型,完成对深度自动编码器预测模型的训练;土壤重金属元素含量的预测。本发明通过深度自动编码器的结构模型并结合太赫兹光谱来进行土壤重金属元素成分分析预测。

Patent Agency Ranking