-
公开(公告)号:CN102944960A
公开(公告)日:2013-02-27
申请号:CN201210450938.4
申请日:2012-11-12
Applicant: 华中科技大学
IPC: G02F1/29 , G02F1/133 , G02F1/1343 , G02F1/1339 , G02F1/1333 , G03F7/00
Abstract: 本发明公开了一种电扫描焦点可摆动液晶微透镜,包括上玻璃衬底、PI定向层、ITO透明下电极、液晶层、玻璃间隔子、ITO透明上电极以及下玻璃衬底,ITO透明下电极和ITO透明上电极分别镀在下玻璃衬底和上玻璃衬底的一面上,且均与外界电源相连,ITO透明上电极具有四个呈十字形对称排列的子电极,子电极的形状为近似条形,ITO透明下电极的圆心与四个子电极所围成的圆形的圆心对齐,PI定向层是镀在ITO透明下电极和ITO透明上电极上,液晶层灌注在上玻璃衬底和下玻璃衬底之间。本发明能够解决现有技术中存在的制作工艺难度大、三层电极结构需要较大驱动电压、驱动电压必须保持同相位从而给应用带来不便、焦点摆动效果不理想的问题。
-
公开(公告)号:CN102853917A
公开(公告)日:2013-01-02
申请号:CN201210315340.4
申请日:2012-08-30
Applicant: 华中科技大学
IPC: G01J5/10
Abstract: 本发明公开了一种液晶基电调成像波谱面阵红外探测芯片,包括陶瓷外壳、谱红外成像探测架构以及金属散热板,谱红外成像探测架构设置在陶瓷外壳内,并包括驱控与图像预处理模块、面阵非制冷红外探测器、以及电调成像波谱液晶模块,三者同轴顺序设置,电调成像波谱液晶模块用于接收目标红外入射光,通过其内的多级次高反射干涉相干提取红外入射光中的谱红外光,并传送到面阵非制冷红外探测器,面阵非制冷红外探测器用于对谱红外光进行光电转换,以生成电响应信号。本发明具有结构紧凑,成像波谱响应迅速,可执行任意的波谱切入、凝视或跳转,谱成像探测效能高,易与其它光学/光电/机械结构耦合,以及环境适应性好等特点。
-
公开(公告)号:CN101738619B
公开(公告)日:2011-10-26
申请号:CN200910272921.2
申请日:2009-11-27
Applicant: 华中科技大学
Abstract: 双波段红外光学系统,属于红外遥感光学系统,解决现有图谱合一装置光路布局受到限制,整个设备体积大的问题。本发明包括扫描转镜、双波段红外光学镜头、光谱仪、红外焦平面探测器和信号处理器,双波段红外光学镜头由红外窗口、分光镜、中波镜头、长波镜头组成;扫描转镜位于红外窗口上方,红外光纤将中波镜头输出的红外光传输到光谱仪,红外焦平面探测器位于长波镜头输出光轴上,光谱仪和红外焦平面探测器输出信号通过传输电缆送至信号处理器。本发明体积小、集成度高、使用方便、灵活,对外部景物双波段观测,能够实现对目标的自动扫描、辨识和跟踪,可以有效地应用于导弹红外制导、大气污染及有毒气体遥测等军事或民用领域。
-
公开(公告)号:CN113835273B
公开(公告)日:2024-12-27
申请号:CN202111279773.4
申请日:2021-10-29
Applicant: 华中科技大学
IPC: G02F1/1343 , G02F1/1337 , G02F1/133 , G02F1/13
Abstract: 本发明公开了一种液晶微光学结构以及液晶基电调光场成像探测芯片,属于光学成像探测领域,液晶微光学结构包括液晶材料层以及分别设置在其两侧的图案化电极层和公共电极层;图案化电极层由导电膜构成,导电膜中设置有阵列分布的电极微孔,不同孔径的电极微孔交替排列,相同孔径的电极微孔周期排列;当图案化电极层和公共电极层间施加的信号电压的均方幅值高于均方幅值阈值时,不同孔径电极微孔下液晶材料层中的液晶分子呈不同空间排布形态,以在液晶材料层中形成与周期交替阵列分布对应的梯度折射率分布,使得液晶微光学结构在同一时刻具有多个焦距。多焦距可二次扩展景深范围,从而对视场中更广阔深度范围内的物体进行清晰成像。
-
公开(公告)号:CN112216762B
公开(公告)日:2024-08-27
申请号:CN202011155888.8
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的太赫兹信号探测器及其制备方法,包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层宽度为2~10mm,包括微米基元以及多个平面金属纳尖单元;微米基元为微米结构,形状为多边形;金属纳尖单元分布在微米基元各个边的内侧或外侧,对于入射的太赫兹信号具有局域表面等离激元特性。如此,由于纳尖单元对入射的太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的太赫兹信号产生局域表面等离激元振荡,能够在极短时间内产生极强的响应信号;同时,本发明采用微纳结构,在满足较好探测性能的前提下,大大减小了太赫兹信号探测器的成本。
-
公开(公告)号:CN116295823A
公开(公告)日:2023-06-23
申请号:CN202310264069.4
申请日:2023-03-02
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于纳尖结构的红外探测器,包括摄像头测试盒和镜头支架,还包括成像物镜、纳尖组合和光敏阵列,光敏阵列由多个光敏元组成;纳尖组合包括基片以及纳尖阵列,纳尖阵列包括多个纳尖结构,每个纳尖结构均包括尖型结构以及金属膜层,任意相邻的两个纳尖结构的金属膜层通过导电线实现电连接,位于纳尖阵列边缘的一排纳尖结构的每个金属膜层上均连接有引出导线;每个光敏元对应一个子纳尖阵;每个纳尖结构的尖端均指向光敏元;纳尖阵列和光敏阵列产生近场耦合。本发明具有成像光波收集效能高,通过纳尖电子强积聚实现入射光放大,显著提高常规可见光探测阵列的光电灵敏度,可实现弱辐射目标的实时原位高灵敏度探测的特点。
-
公开(公告)号:CN114019730A
公开(公告)日:2022-02-08
申请号:CN202111280447.5
申请日:2021-10-29
Applicant: 华中科技大学
IPC: G02F1/1343 , G02F1/1337 , G02F1/1333
Abstract: 本发明公开了一种双模一体化液晶微透镜阵列,包括上极板、下极板以、液晶和间隔子组,上极板包括第一基片、电极图案和第一PI膜,电极图案包括第一电极和第二电极,第一电极为微孔电极,第一电极包括第一导电层和微孔,第二电极包括中心导电层、第二导电层、多根导电引出线和多根导电连接线,每个中心导电层分别位于一个微孔内。本发明的上极板采用单层板,当电压加载于上极板的第一电极和下极板的ITO膜之间时,液晶微透镜阵列工作于凸透镜状态,当电压加载于上极板的第二电极和下极板的ITO膜之间时,液晶微透镜阵列工作于凹透镜状态,实现了结构上的简化。同时上极板、下极板均为单层板,可增加光的透过率,增加光束能量利用率。
-
公开(公告)号:CN112216763A
公开(公告)日:2021-01-12
申请号:CN202011155904.3
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的太赫兹射频信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为2~100mm,包括分别用于探测射频S波段、C波段或X波段信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对射频和太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨太赫兹射频波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得太赫兹射频信号探测器体积很小、重量很轻。
-
公开(公告)号:CN112216761A
公开(公告)日:2021-01-12
申请号:CN202011155858.7
申请日:2020-10-26
Applicant: 华中科技大学
IPC: H01L31/115 , H01L31/0236 , H01L31/0216 , H01L31/18 , H01Q15/00 , H01Q15/10
Abstract: 本发明公开了一种基于超表面光学天线的红外太赫兹信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为0.5~10mm,并且包括分别用于探测红外信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对入射的红外信号和太赫兹信号波段电磁信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨红外太赫兹波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得红外太赫兹信号探测器体积很小、重量很轻。
-
公开(公告)号:CN105549232B
公开(公告)日:2019-01-04
申请号:CN201510901830.6
申请日:2015-12-08
Applicant: 华中科技大学
Abstract: 本发明公开了一种双模一体化电控液晶光开关阵列。阵列化排布的液晶微光学结构在双路时序电信号驱控下呈现为电控液晶聚光微透镜阵列或电控液晶散光微透镜阵列,源于同一液晶微光学结构的每单元液晶聚光微透镜与每单元液晶散光微透镜有相同光轴;在聚光模式下,在一组相互匹配的双路电信号驱控下形成的液晶聚光微透镜对入射光波实施可调焦聚光操作,构成光开关的开启态;在散光模式下,在另一组相互匹配的双路电信号驱控下形成的液晶散光微透镜对入射光束实施可控光发散程度的散光操作。本发明通过加载相应的双路电信号,完成纤光束间的光波通断操作,开关的驱控方式灵活,适用于波谱范围宽、光强变动范围大的光纤/光缆系统。
-
-
-
-
-
-
-
-
-