-
公开(公告)号:CN118378527A
公开(公告)日:2024-07-23
申请号:CN202410512693.6
申请日:2024-04-26
Applicant: 中国矿业大学 , 陕西长武亭南煤业有限责任公司
IPC: G06F30/27 , G06N3/084 , G06N20/10 , G06F18/214 , G06F18/24 , G06N3/006 , G06N3/126 , G06T17/05 , G06F111/10 , G06F119/14
Abstract: 一种基于数值仿真和深度学习的巷道围岩稳定性评估方法,获取实际地质环境下的地层岩石实际参数;根据煤矿井下巷道附近的钻孔柱状图及实验确定的地层岩石参数建立二维地质模型;改变影响因素,并记录改变影响因素后巷道帮部形变量、加速度值及是否发生明显破坏情况,然后,将所提取的影响因素与巷道围岩动态响应特征作为标签,再将两者进行组合得到数据集,最后将所得到的多组数据集形成数据库;将数据集按照设定比例分为训练集和验证集,并将训练集输入PSO‑BP神经网络和GA‑SVM深度学习模型进行深度学习,得到基于数值模拟和深度学习的初步巷道围岩稳定性评价模型,随后利用验证集对初步巷道围岩稳定性评价模型进行调整验证,得到优化后的巷道围岩稳定性评价模型;进行稳定性评估。该方法能对巷道围岩稳定性进行快速、准确的评价。
-
公开(公告)号:CN116927842A
公开(公告)日:2023-10-24
申请号:CN202310914482.0
申请日:2023-07-24
Applicant: 中国矿业大学
Abstract: 一种基于RFID的锚杆或锚索自动化测报系统及方法,系统:位移传感器一安装在杆头的内部;应力测报垫板通过其中心的安装孔套设在杆尾的外部,其内部装配有应力传感器与RFID收发装置一;位移测报装置位于应力测报垫板靠外的一侧,且通过其中心的安装孔套设在杆尾的外部,其内部装配有位移传感器二与RFID收发装置二;球头形螺母位于锚杆或锚索在实际使用过程中裸露于巷道的一端。方法:获取锚杆或锚索的位移初始状态和应力初始状态;实时监测实际应力值和实际位移值,并分别与应力报警阈值和位移报警阈值进行比较,在失效后及时进行报警。该系统及方法能够通过无接触的方式进行锚杆或锚索的数据测报,可及时、准确地对锚杆或锚索使用状态进行监测。
-
公开(公告)号:CN116894346A
公开(公告)日:2023-10-17
申请号:CN202310916374.7
申请日:2023-07-24
IPC: G06F30/20 , G06F30/13 , G06F18/2431 , G06F119/14
Abstract: 本发明公开了一种井下托顶煤巷道顶板围岩结构的分类方法,先根据待分类托顶煤巷道的顶煤厚度与锚杆及锚索间的支护形式,对托顶煤巷道进行分类,然后根据分类后的结果,将不同分类巷道的顶板锚固结构分为叠加梁‑拱型、组合梁‑拱型和组合拱三种类型,且设定厚煤梁的梁‑拱转换临界值,并将顶煤厚度与该临界值进行比较,根据不同顶煤厚度再进一步划分顶板结构力学模型,最后将确定的顶板结构力学模型进行网格化处理,得出当前顶板结构的极限承载强度。本发明能根据托顶煤巷道顶煤的厚度变化,对顶板结构进行分类,并确定分类后每种类型的顶板结构力学模型,从而有效提高对不同顶煤厚度的托顶煤巷道顶板结构进行力学分析的精度。
-
公开(公告)号:CN116797092A
公开(公告)日:2023-09-22
申请号:CN202310766897.8
申请日:2023-06-27
Applicant: 中国矿业大学
IPC: G06Q10/0639 , E21F15/00 , G06F16/2458 , G06Q50/02
Abstract: 本发明涉及一种基于三类矿震要素判定的采空区填充效果检验方法,包括:获取未填充采空区的矿震要素,将所述未填充采空区的矿震要素作为初始指标;基于所述初始指标预设采空区填充效果检验级别评估阈值,并对各级评估阈值区间进行权重赋值;获取已填充采空区待测区域的矿震要素指标,基于所述待测区域的矿震要素指标,结合所述各级评估阈值的权重,评判采空区填充效果。本发明实现了对采空区填充效果检验的无损探测,保证了采空区填充效果检验的实时性、持续性和准确性。
-
公开(公告)号:CN116295074A
公开(公告)日:2023-06-23
申请号:CN202310108861.0
申请日:2023-02-13
Applicant: 中国矿业大学
IPC: G01B11/16 , G06T7/00 , G01S17/931 , G01S17/86 , G05D1/02
Abstract: 一种基于深度图像的煤矿巷道围岩变形破坏监测装置及方法,巷道围岩数据采集装置由远程遥控胶轮车、矿用本安双目相机模块和多项传感装置模块组成;远程遥控胶轮车由防爆胶轮车体、远程控制模块、通讯模块、锂电池组成;矿用本安双目相机模块由两套双目相机组成,两套双目相机分别安装在防爆胶轮车体的车身前端和后端;多项传感装置模块由陀螺仪、激光测距仪和防爆全景摄像头组成,其装配在防爆胶轮车体上;方法:在巷道内布置位置监测点,并测量巷道围岩形变的初始状态;利用防爆胶轮车体进行巷道内图像数据的采集;利用图像数据处理模块对图片数据进行处理,并输出结果。该装置及方法能够通过无人化的方式及时、准确对巷道围岩变形量进行监测。
-
公开(公告)号:CN116243379A
公开(公告)日:2023-06-09
申请号:CN202310175183.X
申请日:2023-02-28
Applicant: 中国矿业大学
Abstract: 本发明提供了一种基于震源机制与定位误差校准的强矿震预测方法,首先采集煤矿采掘过程中产生的微震数据,基于所述微震数据确定目标震源群并获取所述目标震源群中所有震源的震源机制解,基于所述震源机制解获取震源方位角和震源倾角;对目标震源群中所有震源进行定位误差分析,获取所有震源的定位分布概率密度;基于所有震源的震源方位角和震源倾角,以及所有震源的定位分布概率密度对目标震源群中所有震源进行聚合分析并构建强矿震预测指数以进行强矿震预测。本发明能够量化分析煤矿采掘活动诱发微震事件的聚集情况,实现对强矿震的准确预测。
-
公开(公告)号:CN115492571A
公开(公告)日:2022-12-20
申请号:CN202211354177.2
申请日:2022-11-01
Applicant: 中国矿业大学 , 徐州弘毅科技发展有限公司 , 徐州物硕信息技术有限公司
Abstract: 本发明公开了一种基于坚硬厚岩层与煤层厚距关系的冲击危险评价方法,先采集所需评价煤层上方的地质资料,确定煤层上方各个岩层的分布情况和各个岩层的力学性能,接着选出符合条件的坚硬厚岩层,并记录各个坚硬厚岩层的厚度及各自下边界与煤层上边界之间的距离;然后根据本申请人研究发现煤层上方坚硬厚岩层的厚度与坚硬厚岩层下边界距煤层上边界的距离之间的关系,对煤层的冲击地压存在对应影响,经过取值划分后确定判别标准,将选出的坚硬厚岩层分别经过判别标准处理后,得出各个坚硬厚岩层对应的危险指数;最后选择各个坚硬厚岩层对应的危险指数中的最大值,确定为最终危险指数,根据最终危险指数确定煤层顶板在对煤层造成的冲击地压危险强度。
-
公开(公告)号:CN115355008A
公开(公告)日:2022-11-18
申请号:CN202210835553.3
申请日:2022-07-15
Applicant: 中国矿业大学 , 上海大屯能源股份有限公司江苏分公司
Abstract: 本发明公开一种冲击地压矿井掘进巷道煤岩穿层期间立体式卸压方法,包括以下步骤:S1.根据巷道掘进设计图划分巷道穿层类型;S2.对不同巷道穿层类型分别进行围岩钻孔取芯测量,确定掘进巷道围岩属性;S3.基于围岩属性,将掘进巷道沿巷道掘进方向的未掘部分划分成不同卸压等级区域;S4.制定掘进巷道不同卸压等级区域的立体式卸压方案参数;S5.多轮次开展立体式卸压,实现掘进巷道煤岩穿层期间立体式卸压。本发明有效提高冲击地压矿井掘进巷道煤岩穿层期间的卸压效果,降低由煤岩介质转化造成的构造应力集中现象,进一步降低由构造应力带来的冲击动力灾害风险,提高了井下掘进巷道工作人员的生命安全系数。
-
公开(公告)号:CN115263318A
公开(公告)日:2022-11-01
申请号:CN202210759603.4
申请日:2022-06-29
Applicant: 中国矿业大学 , 陕西长武亭南煤业有限责任公司
Abstract: 本发明公开一种冲击地压矿井掘进巷道迎头爆破裂孔组合卸压方法,包括以下步骤:S1.沿巷道掘进方向将巷道划分成不同危险等级区域;S2.采集不同危险等级区域的掘进巷道迎头应力峰值位置;S3.制定不同危险等级区域的大直径钻孔和煤层爆破卸压参数;S4.掘进巷道迎头先实施大直径钻孔卸压,然后实施迎头煤层爆破卸压,实现巷道迎头爆破致裂大直径钻孔的组合卸压。本发明有效提高冲击地压矿井掘进巷道迎头卸压时效性,降低由卸压时效缓慢造成的冲击动力灾害风险,提高了井下工作人员的生命安全系数。
-
公开(公告)号:CN113914932B
公开(公告)日:2022-10-11
申请号:CN202010654402.9
申请日:2020-07-08
IPC: E21F17/18
Abstract: 本发明公开了利用震动波断层扫描识别煤与瓦斯突出危险区域的方法,包括以下步骤:步骤1,安装微震监测系统;步骤2,利用微震监测系统采集分析震动波传播信息和震源多维震动信息;步骤3,采用震动波波速信息对煤岩层的断层扫描,利用震动波波速异常系数区域预测应力异常区Q1;利用微震频次、震源集中度等预测地质异常区Q2,采用微震能量、频次等动态识别采掘扰动异常区Q3;步骤4,将Q1、Q2和Q3共同组成煤与瓦斯突出危险区域Q;步骤5,利用突出综合预警指数I综定量化确定煤与瓦斯突出危险区域的危险程度,并进行煤与瓦斯突出危险分级;步骤6,根据不同危险级别制定相应的防治措施。
-
-
-
-
-
-
-
-
-