-
公开(公告)号:CN106673700A
公开(公告)日:2017-05-17
申请号:CN201611096173.3
申请日:2016-12-02
Applicant: 哈尔滨工业大学(威海)
IPC: C04B38/08 , C04B38/00 , C04B26/10 , C04B26/16 , C04B26/12 , C04B26/28 , C04B26/06 , C04B26/04 , C04B26/14 , B28B3/26
Abstract: 本发明提供一种石墨泡沫的制备方法,以石墨纳米片为原料,添加少量的高分子粘结剂,通过模板成型,干燥后形成石墨泡沫。本发明的制备方法简单、方便,可成型各种形状的石墨泡沫,而且所制备的石墨泡沫密度可控、孔隙较均匀。本发明制备的石墨泡沫还具有较高的抗压强度、较低的电阻、能吸油、高导热等优点,可广泛用于散热器、导热垫、电磁屏蔽材料等领域,具有广大的应用前景。
-
公开(公告)号:CN106582116A
公开(公告)日:2017-04-26
申请号:CN201710021627.9
申请日:2017-01-12
Applicant: 哈尔滨工业大学(威海)
CPC classification number: B01D39/2068 , B01D2239/10 , C04B41/009 , C04B41/5144 , C04B41/88 , C04B41/5053 , C04B41/4582 , C04B41/4527 , C04B35/10
Abstract: 一种医药中间体过滤材料的制备方法及装置,涉及医药制备技术领域,方法为:a、将硝酸铁、硫酸镍、EDTANa2、水合肼制备成质量分数10‑25%的溶液,调节PH=4‑6;b、将硅溶胶、硼酸、二甲胺混合并稀释至质量分数30‑60%,超声震荡2‑5h,调节PH=3‑7;c、将a、b制备的产物按体积比1‑8:1置入等离子喷枪喷出的等离子火焰内;d、等离子火焰将其喷在氧化铝蜂窝陶瓷或不锈钢孔板等支撑体表面进行原位反应,制备成医药中间体过滤材料。其制备装置为:等离子喷枪喷口前侧设有喂料套管,喂料套管的外管与第一蠕动泵输送软管相连、内管与第二蠕动泵输送软管相连。具有工艺简单、生产效率高,过滤孔径范围可控等优点。
-
公开(公告)号:CN103896589B
公开(公告)日:2015-04-29
申请号:CN201410079851.X
申请日:2014-03-06
Applicant: 哈尔滨工业大学(威海)
IPC: C04B35/515 , C04B35/622 , C04B38/00
Abstract: 本发明涉及一种纳米孔结构硅硼碳氮多孔陶瓷的制备方法,由三氯化硼、苯胺、二甲基硅油按比例1:1:2.5均匀混合,加热下反应制得有机先驱体。再将纳米聚丙烯腈纤维浸渍于有机先驱体中并在一定温度下保温。最后将这种混合物置于高纯氮气气氛下烧结,保温结束后随炉冷却至室温。经过高温氮化处理后,其中的聚丙烯腈纤维被刻蚀掉,形成纳米孔结构的硅硼碳氮(Si-B-C-N)多孔陶瓷。得到的硅硼碳氮(Si-B-C-N)多孔陶瓷径为150-300nm,孔隙率高达78~90%,耐高温,抗氧化,空气气氛下950oC没有明显氧化,1100oC时机械性能没有明显损失。可用于柴油尾气颗粒捕集器(DPF)载体。
-
公开(公告)号:CN103449505A
公开(公告)日:2013-12-18
申请号:CN201310380719.8
申请日:2013-08-28
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种氧化锌纳米材料的制备方法,其将锌粉均匀铺展于一可用于感应加热的石墨纸加热体表面;通过感应加热设备对加热体进行加热,加热体升温加热锌粉,在空气环境下,锌粉蒸发与空气中的氧反应,得到纯净氧化锌纳米材料。本发明制备方法工艺、设备简单,制备效率高,转化率高,无需复杂的分离程序。制备得到氧化锌纳米材料可广泛应用于短波激光器、二次电池电极、化学传感器、太阳能电池以及橡胶制品添加剂等。
-
公开(公告)号:CN116285888B
公开(公告)日:2024-06-07
申请号:CN202310315154.9
申请日:2023-03-24
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 一种表面接枝氮原子的二氧化硅基导电复合材料的制备方法及其应用,它属于吸波材料技术领域。它要解决传统绝缘体材料二氧化硅无电磁波吸收能力的问题。方法:一、将单盐酸肼、正硅酸乙酯和N,N‑二甲基甲酰胺混匀,经加热后自然冷却,得凝胶状固体B;二、凝胶状固体B溶于无水乙醇中,经离心及干燥后,获得表面接枝氮原子的二氧化硅基导电复合材料。本发明采用一步溶剂热的方式制备材料,工艺简单成本低,工艺,绿色无污染;将二氧化硅绝缘材料通过简单的N掺杂实现导体材料的转变,材料平衡的导电性和极化效应相互配合,最终实现了高强度和宽频段的电磁波吸收性能。本发明中表面接枝氮原子的二氧化硅基导电复合材料适用于电磁波吸收材料。
-
公开(公告)号:CN116814158B
公开(公告)日:2024-05-03
申请号:CN202310887999.5
申请日:2023-07-19
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: C09D183/14 , C09D5/08 , C03C17/32
Abstract: 本发明公开了一种透波抗雨蚀自清洁材料及其应用,涉及抗雨蚀防水技术领域,所述透波抗雨蚀自清洁材料,按质量份计,原料包括:聚硼硅氧烷40‑50份,聚铝硅氧烷30‑40份,锂基硅油脂10‑20份。将透波抗雨蚀自清洁材料球磨处理、干燥后,涂覆到基体表面,对基体进行热处理,得到有机硅疏水涂层,继续热处理,得到微晶玻璃亲水涂层。采用有机前驱体法制备涂层,改善原料混合均匀程度,达到分子级别扩散,提高涂层在基体表面的涂覆性能,有机硅疏水涂层具有防水性能,继续热处理后,生成的微晶玻璃亲水涂层为无机亲水水透波涂层,该涂层不仅具有抗雨蚀性能,还可实现自清洁,上述两种涂层可实现对基材的多温度段防护。
-
公开(公告)号:CN114105088B
公开(公告)日:2023-09-22
申请号:CN202111359134.9
申请日:2021-11-17
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: C01B32/184 , B82Y30/00 , C01B32/194 , C01G51/04 , H05K9/00
Abstract: 本发明涉及新型吸波剂制造技术领域,具体的说是一种能够提供多层异形空心微结构,进而有效提高吸波率的石墨纳米片复合四氧化三钴多层异形空心吸波剂的制备方法,其特征在于,先采用一步溶剂热法制备前驱体,以石墨纳米片和钴盐为原料,通过混合溶剂的还原作用,以柠檬酸作为形貌控制剂,PVP为分散剂制备空多层异形空心结构Co3O4/GNs复合吸波材料的前驱体;再通过在马弗炉中煅烧将实心前驱体氧化为多层异形空心结构Co3O4/GNs复合吸波材料。
-
公开(公告)号:CN116314770A
公开(公告)日:2023-06-23
申请号:CN202310441624.6
申请日:2023-04-23
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 一种大规模制备高性能亚硒酸盐锂离子电池负极材料的方法,它属于锂离子电池负极材料的制备领域。它解决了现有亚硒酸盐材料制备周期较长、产物含量较低的问题。方法:将四水合醋酸盐、二氧化硒和石墨烯充分研磨混匀后,置于球磨罐中,并加分散液,球磨后得到浆液,烘干后收集粉末,即为亚硒酸盐锂离子电池负极材料。本发明MSeO3@Graphene负极具有超高的比容量表现,在超高电流密度下比容量、长循环性能同样非常优异,制备过程简单,原料易得,周期短,产物含量高,适合大规模制备亚硒酸盐锂离子电池负极材料,填补了材料受限于实验室制备的空白,为产业化提供了可行办法。适用于高性能亚硒酸盐锂离子电池负极材料的大规模制备。
-
公开(公告)号:CN115955833A
公开(公告)日:2023-04-11
申请号:CN202211455050.X
申请日:2022-11-21
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: H05K9/00
Abstract: 本申请提供一种层状化合物与磁性石墨复合吸波材料及其制备方法,所述制备方法包括将三价铁盐和石墨材料加入醇溶液中,搅拌并超声处理至分散均匀,得到第一混合溶液;将第一混合溶液放入水热反应釜中,加热反应一段时间,待冷却后抽滤、洗涤、干燥,获得磁性石墨材料;将2‑甲基咪唑、金属盐和磁性石墨材料分散于去离子水中,机械搅拌后得到第二混合溶液;将第二混合溶液静置老化,取沉淀物烘干,得到层状化合物与磁性石墨复合吸波材料。本申请提供的制备方法及其制备得到的层状化合物与磁性石墨复合吸波材料,具有良好的吸波特性,制备成本低且不会造成环境污染。
-
公开(公告)号:CN113745485B
公开(公告)日:2022-11-29
申请号:CN202111049504.9
申请日:2021-09-08
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: H01M4/36 , H01M4/38 , H01M4/583 , H01M10/0525 , B82Y40/00
Abstract: 一种氮掺杂碳管负载Ni@C微米花锂离子电池负极材料的制备方法,它属于锂离子电池负极材料的制备领域。它要解决现有碳负极材料在脱嵌锂过程中存在的放电容量低以及倍率性能差的问题。方法:一、密胺海绵超声处理后烘干;二、配制溶液A;三、密胺海绵浸渍于溶液A中密封容器并加热,取出后烘干,再于惰性气氛下煅烧,即完成。本发明氮掺杂碳管负载Ni@C微米花锂离子电池负极材料的中碳管壁厚500nm,中空结构的尺寸为1.5μm,为脱嵌锂过程中的体积膨胀提供了充足的空间,自组装成Ni@C微米花,增大了电极与电解液的接触面积,提高了放电容量和倍率性能。氮掺杂碳管负载Ni@C微米花锂离子电池负极材料作为锂离子电池负极材料。
-
-
-
-
-
-
-
-
-