-
公开(公告)号:CN112817579B
公开(公告)日:2024-04-02
申请号:CN202110112023.1
申请日:2021-01-27
Applicant: 华中科技大学
IPC: G06F8/30 , G06F30/20 , G06F113/10
Abstract: 本发明公开了一种高能束增材减材复合制造的减材数控程序生成方法,属于先进制造技术领域,包括如下步骤:(1)金属零部件的减材加工模型预处理;(2)金属零部件的减材加工模型切片处理;(3)基于减材加工模型切片特征生成单层数控程序;(4)记录单层数控程序生成的底层操作源代码并进行循环改写;(5)生成完整金属零部件的减材加工模型数控程序。该方法无需开发专用软件,仅依靠常规计算机辅助设计/制造软件和常用编程语言及编码器,即可生成任意金属零部件高能束增材减材复合制造的减材数控程序,成本低、效率高、应用灵活。
-
公开(公告)号:CN108480638B
公开(公告)日:2024-03-19
申请号:CN201810521917.4
申请日:2018-05-28
Applicant: 华中科技大学
Abstract: 本发明属于选择性激光熔化增材制造技术领域,并具体公开了一种三段式选择性激光熔化组合预热系统,该系统包括均布置在工作腔内的预热段、均热段和多级加热段,其中,预热段布置在工作腔内部的上方,用于储存粉末,并对粉末进行预热;均热段位于预热段的下方,用于对从预热段落下的粉末进行均热,并将均热后的粉末送入多级加热段中,均热后的粉末在多级加热段中进行选择性激光熔化成形;多级加热段位于均热段的旁侧,用于对已均热的粉末进行加热,并对已激光成形的部分进行梯度加热,形成自上而下的温度梯度。本发明显著降低了粉末在工作腔内运动过程中的热损失,实现对金属粉末的分段高温预热,具有预热效果好,适用性强等优点。
-
公开(公告)号:CN108555464B
公开(公告)日:2024-02-02
申请号:CN201810698636.6
申请日:2018-06-29
Applicant: 华中科技大学
IPC: B23K26/70 , B23K26/082 , B23K26/00
Abstract: 本发明属于激光加工技术领域,并具体公开了一种大型复杂曲面动态聚焦激光加工方法及系统,该方法首先采用分片‑分块‑分层的方式依次分解复杂曲面片,进而以分层‑分块‑分片的成形次序实现大型复杂曲面动态聚焦激光加工;所述系统包括多轴联动机床和激光扫描装置,多轴联动机床用于对待激光加工的大型复杂曲面进行定位,并带动大型复杂曲面运动到激光扫描装置的扫描范围内或带动激光扫描装置运动使大型复杂曲面在激光扫描装置的扫描范围内,激光扫描装置用于发射激光束至大型复杂曲面以对大型复杂曲面进行激光快速三维扫描加工。本发明具有加工效率高、加工精度高、质量好等优点,适用于各种曲率的大型复杂曲面的激光三维动态扫描加工。
-
公开(公告)号:CN106987838B
公开(公告)日:2023-05-26
申请号:CN201710282347.3
申请日:2017-04-26
Applicant: 华中科技大学
Abstract: 本发明属于激光材料加工技术领域,具体涉及一种去除激光熔覆层气孔/夹杂物的激光熔覆装置,其包括工作台、设置在工作台前方的激光熔覆送粉器以及位于工作台上方的激光复合加工头,激光复合加工头包括电极、感应线圈、激光导光筒、磁体、工作磁极Ⅰ和工作磁极Ⅱ,磁体为工作磁极Ⅰ和工作磁极Ⅱ之间提供交变磁场作用于工件的表面,激光熔覆送粉器为工件表面添加激光熔覆材料,激光器输出激光束在工件表面进行激光熔覆。本发明还公开了一种去除激光熔覆层气孔/夹杂物的激光熔覆方法。本发明可以降低铝合金激光熔覆层中的气孔及非金属夹杂物,显著提高激光熔覆层的质量,具有重要的应用价值。
-
公开(公告)号:CN112077306B
公开(公告)日:2021-11-19
申请号:CN202010844237.3
申请日:2020-08-20
Applicant: 华中科技大学
IPC: B22F3/105 , C23C24/10 , B22F7/06 , B22F3/24 , C22C19/05 , C22C19/07 , C22C30/00 , C22C38/04 , C22C38/44 , C22C38/56 , B21B19/04
Abstract: 本发明属于激光加工领域,公开了一种激光选区熔覆强化无缝钢管穿孔顶头的方法及得到的顶头,其中方法包括如下步骤:(1)在待强化穿孔顶头的端部加工形成U形沟槽,使U形沟槽呈圆环形、螺旋形或者是呈发散状分布;(2)采用激光熔覆在U形沟槽中熔覆合金材料;(3)将穿孔顶头加工至预设尺寸后进行表面氧化处理,得到表面具有氧化层的穿孔顶头,完成强化。本发明利用激光选区熔覆强化穿孔顶头,激光熔覆高温合金层可以显著提高穿孔顶头高温强度,防止塑性变形和塌鼻问题,而未激光熔覆区域形成的较厚的氧化皮能够有效降低穿孔过程中顶头与钢管毛坯之间的摩擦系数和热传导系数,防止穿孔顶头表面温度升高,抑制穿孔过程中产生粘钢现象。
-
公开(公告)号:CN112916877B
公开(公告)日:2021-11-09
申请号:CN202110112031.6
申请日:2021-01-27
Applicant: 华中科技大学 , 北京临近空间飞行器系统工程研究所
Abstract: 本发明公开了一种基于接触式刮刀铺粉工艺的多孔发汗金属结构高质量激光选区熔化成形方法,属于先进制造技术领域。该方法在多孔发汗金属结构四周设置与其不相连的闭合随形保护框,并在成形过程中通过激光线能量密度的差异化设置,使得随形保护框的已成形层总高度总是大于多孔发汗金属结构的已成形层总高度,从而有效避免了成形过程中接触式铺粉刮刀对多孔发汗金属结构成形层的摩擦、碰撞,大幅提升了多孔发汗金属结构的成形质量。同时,该方法还无需在成形完成后对多孔发汗金属结构和随形保护框施加额外的分离处理,制造流程简单。
-
公开(公告)号:CN111613888B
公开(公告)日:2021-10-08
申请号:CN202010490076.2
申请日:2020-06-02
Applicant: 华中科技大学
Abstract: 本发明公开了一种多层互联立体电路的一体化共形制造方法及产品,属于多层天线制造领域,包括:S1采用3D打印方式制备支撑结构基体,S2在步骤S1获得的支撑结构基体表面制备具有催化能力的活化图案,S3在活化图案上沉积金属,获得与活化图案相一致的金属图案层,首次制备的金属图案为第一金属图案层,S4制备介质层,介质层用于隔离相邻两层金属图案层,首次制备的介质层为第一介质层,S5制备穿透介质层的垂直互联通孔,该垂直互联通孔具有导电能力以能互联相邻两层金属图案层,S6在第一介质层上制备第二金属图案层。本发明方法能实现快速、高质量、廉价地制备多层互联立体电路。
-
公开(公告)号:CN112935277A
公开(公告)日:2021-06-11
申请号:CN202110110502.X
申请日:2021-01-27
Applicant: 华中科技大学 , 北京临近空间飞行器系统工程研究所
IPC: B22F10/28 , B22F10/85 , B22F10/366 , B33Y10/00 , B33Y50/02
Abstract: 本发明属于先进制造技术领域,并具体公开了一种多级互连微孔金属发汗结构的激光选区熔化成形方法,其首先利用简单的数模布尔运算形成具有一级微孔特征信息的发汗结构打印数模,在激光选区熔化成形过程中,一方面基于一级微孔特征信息直接成形一级微孔;另一方面通过使激光扫描间距大于激光熔覆线宽度,直接在相邻激光熔覆线之间成形二级微孔;同时,通过增大激光束能量输入,直接在激光熔覆线底部形成气孔式三级微孔。本发明所提供的方法,不仅数模预处理运算量小,也无需金属粉末预处理和打印后处理,可高效实现各类复杂金属发汗结构的整体成形,且发汗结构所含微孔的伸展方向多样、互连性强,确保了发汗冷却能力的均匀、稳定。
-
公开(公告)号:CN112595705A
公开(公告)日:2021-04-02
申请号:CN202011479566.9
申请日:2020-12-15
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于激光诱导击穿光谱的在线粉末检测装置,属于原子发射光谱检测领域,包括:约束金属长管,侧面设置有进样口和检测口,粉末样品经进样口进入管中;推压单元,包括位于约束金属长管两端且部分插入其内部的两个推压子单元;动力控制单元,为推压单元提供动力,推动推压子单元相对于约束金属长管运动,以将粉末样品挤压为样品柱,并将样品柱推至检测口处;光谱检测模块,利用激光烧蚀样品柱以产生光信号,并根据光信号对应的光谱信息生成样品柱的检测结果。装置结构简单,实现粉末样品的快速制备与送检,样品柱的检测形式增强光谱信号的强度与稳定性,提升检测准确度,很好地满足实际生产中对粉末成分快速、准确的在线检测需求。
-
公开(公告)号:CN112276081A
公开(公告)日:2021-01-29
申请号:CN202011063371.6
申请日:2020-09-30
Applicant: 华中科技大学
Abstract: 本发明属于先进制造技术领域,并具体公开了一种兼顾成形效率和成形质量的双光束SLM成形方法及系统,其利用能量分布呈高斯模式的中/低功率、中/小光斑激光束实现金属零部件的高精度成形,利用能量分布呈环形或平顶模式的高功率、大光斑激光束实现金属零部件的高效率成形,以此实现金属零部件的高效率高质量的SLM成形。本发明可实现高效率成形区域与高精度成形区域的紧密冶金结合,并有效抑制不充分熔合、大颗粒夹杂等内部冶金缺陷的形成,显著降低成形材料的残余应力,实现金属零部件的高效率高质量SLM成形。
-
-
-
-
-
-
-
-
-