-
公开(公告)号:CN110263490B
公开(公告)日:2023-07-11
申请号:CN201910608912.X
申请日:2019-07-05
申请人: 中国三峡建设管理有限公司 , 中国水利水电科学研究院
摘要: 本发明提供了一种混凝土坝体临时面应力分析方法,涉及水利水电工程技术领域,本发明提供的混凝土坝体临时面应力分析方法,包括:确定坝体表面的预设保温状态;确定表面散热系数;根据表面散热系数计算混凝土温场,并根据混凝土温场模拟计算温差产生的温度应力;判断坝体安全状况,并对坝体表面保温措施进行调整,本发明提供的混凝土坝体临时面应力分析方法缓解了现有技术中坝体表面保温状态的施工缺乏合理依据的技术问题。
-
公开(公告)号:CN111787086B
公开(公告)日:2022-08-09
申请号:CN202010594093.0
申请日:2020-06-24
申请人: 中国三峡建设管理有限公司 , 中国电建集团成都勘测设计研究院有限公司
IPC分类号: H04L67/12 , H04L67/125 , H04W4/44
摘要: 一种混凝土施工中缆机停靠装料平台桩号识别的方法,步骤1:获取缆机主副塔及吊钩的三维位置,并获取缆机平台的放罐区域边界线的实地测量坐标;步骤2:判断缆机卸料是否完成;步骤3:计算缆机停靠坐标;步骤4:计算缆机停靠桩号。通过以上步骤实现运输车与缆机实际停靠位置的对位。本发明的目的是为了解决在混凝土运输车匹配缆机时需要多次倒车才能准确停靠在正确桩号,这样导致混凝土入仓耗时过长,严重降低工程效率的技术问题。
-
公开(公告)号:CN112417720B
公开(公告)日:2021-08-10
申请号:CN202011249441.7
申请日:2020-11-10
申请人: 中国水利水电科学研究院 , 中国三峡建设管理有限公司
摘要: 本发明属于拱坝安全监测领域,提供了一种谷幅收缩变形作用下拱坝长期安全度的评价方法,包括:先预测拱坝谷幅收缩变形的极限值;建立拱坝地基整体有限元模型,并基于预测的谷幅收缩变形极限值进行谷幅收缩变形反演;将反演得到的位移施加到有限元模型边界,先利用水位超载法后利用降强法分别模拟获取到拱坝地基整体变形时的最大水位超载倍数以及拱坝地基发生失稳破坏时的降强倍数;基于最大水位超载倍数与降强倍数,确定谷幅收缩变形作用下拱坝长期安全度。本发明考虑了拱坝长期运行过程中可能遭遇的洪水、滑坡涌浪等极端荷载,以及拱坝坝体和地基岩体材料特性随时间的逐渐劣化,考虑因素全面客观,具有拱坝安全度评价的准确性高的优势。
-
公开(公告)号:CN112611353A
公开(公告)日:2021-04-06
申请号:CN202011409505.5
申请日:2020-12-03
申请人: 中国水利水电科学研究院 , 中国三峡建设管理有限公司 , 中国电建集团成都勘测设计研究院有限公司
摘要: 本发明公开了一种大坝监控报警系统和方法,包括:监控阈值确定装置和监控报警装置。所述监控阈值确定装置,便于实现动态监控,数据获取,阈值确定。所述监控阈值报警装置用于大坝安全状态区间确定、监测变形值获取和报警;本发明的优点是:根据阈值确定大坝所处状态,在大坝变形超出允许阈值时,产生相应报警信号。与一般监控阈值相比,科学性更高,实用性更强,能够体现实时动态变化特性,降低漏报率和误报率。
-
公开(公告)号:CN111814374A
公开(公告)日:2020-10-23
申请号:CN202010647203.5
申请日:2020-07-07
申请人: 中国水利水电科学研究院 , 中国三峡建设管理有限公司
发明人: 程恒 , 廖建新 , 刘毅 , 周秋景 , 张国新 , 刘有志 , 黄海龙 , 姚孟迪 , 杨宁 , 杨波 , 雷峥琦 , 姜付仁 , 李炳奇 , 江晨芳 , 顾艳玲 , 吴龙珅 , 徐秀鸣 , 张家豪 , 高宇欣
IPC分类号: G06F30/23 , G06F111/10 , G06F119/08 , G06F119/14
摘要: 本发明公开了拱坝施工期地震反应分析及安全评估方法,包括以下步骤:获取拱坝施工期静态分析材料热学、力学参数;进行拱坝施工期全过程仿真计算;进行拱坝施工期地震响应计算;进行拱坝整体抗震安全性评估;提出拱坝施工期抗震措施。本发明考虑真实边界条件及材料参数,模拟了拱坝实际施工过程,能够仿真计算得到拱坝施工期全过程真实工作性态,在此基础上叠加地震荷载作用,计算得到的拱坝地震响应更加接近实际,有利于对拱坝施工期的地震安全性进行准确评估,并提出相应抗震措施。
-
公开(公告)号:CN109896427B
公开(公告)日:2020-06-23
申请号:CN201910234583.7
申请日:2019-03-26
申请人: 中国三峡建设管理有限公司 , 中国电建集团成都勘测设计研究院有限公司
发明人: 王飞 , 樊启祥 , 周绍武 , 张志伟 , 杨宗立 , 汪志林 , 尹习双 , 陈文夫 , 钟桂良 , 牟荣峰 , 王孝海 , 杨宁 , 宋述军 , 刘金飞 , 郭增光 , 谭尧升 , 周孟夏 , 徐建江 , 乔雨 , 冯奕 , 金治成 , 李果 , 晁燕安 , 黄伟 , 周天刚 , 曾贺川 , 张志豪
摘要: 本发明公开了混凝土施工中缆机运输监测预警方法,步骤1,进行调度信息配置;步骤2,混凝土运输车驶入转运平台后与缆机进行匹配,进入垂直运输阶段;步骤3,缆机从转运平台出发后全过程监控缆机的时空位置,分析各环节效率;步骤4,分析得出各环节效率后,在缆机驾驶室系统显示屏中提示,若某一环节耗时过长则向驾驶室发出声光提示信息,即时调整;同时分析缆机运行模式;步骤5,回程阶段,以卸料位置为初始位置,分析过程同去程阶段;将运行分析结果反馈给缆机驾驶室以调整操作;步骤6,对缆机是否相互干扰做实时预警与报警;步骤7,通过上述步骤,实现对混凝土施工中垂直运输过程的监测与预警。
-
公开(公告)号:CN110796634A
公开(公告)日:2020-02-14
申请号:CN201910853666.4
申请日:2019-09-10
申请人: 中国三峡建设管理有限公司 , 浙江大华系统工程有限公司
发明人: 杨宗立 , 杨宁 , 牟荣峰 , 乔雨 , 刘迎雨 , 李果 , 陈世明 , 周大建 , 张新宇 , 厉向军 , 陈伟金 , 宋波 , 李鹏 , 马华东 , 李贻超 , 傅慧源 , 吴卫 , 张鹏飞
摘要: 本申请涉及一种大坝状态检测方法、装置、计算机设备和可读存储介质,其中大坝状态检测方法包括获取大坝监控场景下的待检测图像;将待检测图像输入基于注意力机制的深度学习模型,得到检测结果图像;根据所述检测结果图像确定大坝状态。上述大坝状态检测方法通过基于注意力机制的深度学习模型对大坝监控下的待检测图像进行检测,可以适用于大坝监控场景下的各种目标检测,且检测准确率较高。
-
公开(公告)号:CN108983841A
公开(公告)日:2018-12-11
申请号:CN201810931114.6
申请日:2018-08-15
申请人: 中国三峡建设管理有限公司 , 中国水利水电科学研究院
发明人: 樊启祥 , 洪文浩 , 周绍武 , 杨宗立 , 杨宁 , 牟荣峰 , 乔雨 , 蒋龙 , 张国新 , 刘毅 , 王振红 , 辛建达 , 李璐潞 , 尚静石 , 张磊 , 汪娟 , 马晓芳 , 吴哲 , 侯文倩
IPC分类号: G05D23/32
摘要: 本发明涉及温度控制技术领域,具体涉及一种温度控制设备及方法,温度控制设备包括金属模板、加热组件、制冷组件、温度检测组件以及控制器,金属模板能够包覆于混凝土试件表面并与混凝土试件的表面贴合,加热组件、制冷组件以及温度检测组件分别设置于金属模板内,控制器预存有设定温度值,控制器与加热组件、制冷组件以及温度检测组件分别电连接,以根据温度检测组件检测到的温度值及所述设定温度值控制加热组件和制冷组件的工作状态。通过上述设置,以实现对混凝土试件内的混凝土进行热管理。
-
公开(公告)号:CN108956297A
公开(公告)日:2018-12-07
申请号:CN201810803824.0
申请日:2018-07-20
申请人: 中国三峡建设管理有限公司 , 中国水利水电科学研究院
发明人: 樊启祥 , 周绍武 , 杨宗立 , 杨宁 , 牟荣峰 , 乔雨 , 李果 , 张国新 , 刘毅 , 王振红 , 辛建达 , 李璐潞 , 尚静石 , 张磊 , 汪娟 , 马晓芳 , 吴哲 , 侯文倩
IPC分类号: G01N3/08
CPC分类号: G01N3/08
摘要: 本发明提供一种测量不同约束度下混凝土强度损伤历程的方法和该方法使用的装备,其方法增加了声发射测量,可以更加全面地评价混凝土的强度;该装备可以在不同约束度和不同温度过程下测量混凝土强度损伤历程,即混凝土试件中裂缝的产生、发展乃至于试件抗拉强度的方法中使用的装备,以达到能够对不同约束条件下的混凝土开裂风险精准评估,为混凝土结构温控优化设计提供参数基础。
-
公开(公告)号:CN213657793U
公开(公告)日:2021-07-09
申请号:CN202022665436.6
申请日:2020-11-17
申请人: 中国三峡建设管理有限公司 , 清华大学
IPC分类号: G01B11/30
摘要: 本实用新型提供了一种手持式混凝土粗糙度三维检测装置,它包括摄像机安装板,所述摄像机安装板的底端面对称固定安装有第一摄像机组件和第二摄像机组件,所述第一摄像机组件和第二摄像机组件之间的位置固定有用于定位的激光器,所述摄像机安装板通过连接板与手持结构相连;还包括用于定位扫描位置的标定板,所述标定板与第一摄像机组件、第二摄像机组件和激光器相配合,并实现设定区域混凝土表面的三维扫描。此检测装置将混凝土粗糙情况利用三维激光扫描数字化,进而获取混凝土表面的三维点云数据,进而计算得到混凝土表面粗糙度,达到精确测量混凝土表面的粗糙度目的。
-
-
-
-
-
-
-
-
-