一种连轧过程多机架控制性能评价方法

    公开(公告)号:CN117519067B

    公开(公告)日:2024-08-20

    申请号:CN202311368602.8

    申请日:2023-10-20

    Applicant: 东北大学

    Abstract: 本发明提供一种连轧过程多机架控制性能评价方法,涉及金属轧制技术领域。首先构建连轧过程多机架多变量时间序列;用去趋势波动分析算法对数据进行处理分别求解出时间序列对应的s值进而求取控制系统Hurst指数;利用多机架控制性能等级评价指标评价此时控制器的性能状态。本发明提出的性能评价方法模型依赖性低,可以忽略控制系统本身结构的求取,不需要求解过程时间延迟及复杂的关联矩阵,方案实施简单,可以直接在计算机上通过编程实现,是一种适合实际复杂多变工况的连轧过程多机架控制性能评价方法,可以广泛的推广到多机架连轧生产过程中。

    一种柔性辊弯成型装置
    73.
    发明公开

    公开(公告)号:CN118321400A

    公开(公告)日:2024-07-12

    申请号:CN202410749301.8

    申请日:2024-06-12

    Applicant: 东北大学

    Abstract: 本发明属于柔性辊弯折技术领域,具体涉及一种柔性辊弯成型装置,包括设置在成型台上的成型机构、固定机构和限位机构;所述成型机构设置在成型台的中部,成型机构两外侧分别对称设有固定机构,固定机构的两外侧分别对称设有限位机构;成型机构、两个固定机构、两个限位机构呈“W”设置;两个限位机构相对设置;柔性辊穿入限位机构,固定机构和成型机构分别设置在柔性辊的两侧;所述成型机构包括弯折框和清理环,弯折框和清理环错位设置。通过设置挤压轴、摩擦块,对柔性辊水平方向进行固定;第一摩擦软垫和第二摩擦软垫,间接的对柔性辊进行固定,通过机构之间的配合,对柔性辊的水平方向和竖直方向进行固定,避免出现柔性辊发生偏移的现象。

    一种融合ILQ理论和机器学习的活套-厚度控制方法

    公开(公告)号:CN117718335B

    公开(公告)日:2024-05-31

    申请号:CN202311866697.6

    申请日:2023-12-29

    Applicant: 东北大学

    Abstract: 本发明公开了一种融合ILQ理论和机器学习的活套‑厚度控制方法,所属技术领域为轧制技术控制领域,包括:基于热连轧活套装置的工作过程获取起套和落套阶段的轧制参数和恒张力轧制阶段的相关工艺参数;构建GA‑BP预测模型,基于所述GA‑BP预测模型对所述起套和落套阶段的轧制参数进行计算,获得最优轧制参数;基于所述最优轧制参数设计ILQ控制器,基于所述ILQ控制器对活套‑厚度进行控制。本发明能够有效地消除轧制过程中活套角度和张力震荡,进而减少热轧板带平直度、凸度过大等板形缺陷,提高产品厚度精度,优化板形截面形状。

    一种基于性能评估的热轧过程厚度活套张力优化控制方法

    公开(公告)号:CN117983668A

    公开(公告)日:2024-05-07

    申请号:CN202410409149.9

    申请日:2024-04-07

    Applicant: 东北大学

    Abstract: 本发明提供一种基于性能评估的热轧过程厚度活套张力优化控制方法,涉及热轧技术领域,本发明首先建立热轧厚度‑活套‑张力状态空间方程,并基于状态空间方程和热轧数据模拟了热轧产线的厚度‑活套‑张力控制系统。采用Hurst指数实时对厚度‑活套‑张力控制系统进行性能评估,若发现控制系统的控制性能不佳,则采用小龙虾优化算法对控制系统的控制参数进行优化,并采用优化后的控制参数对热轧生产过程进行控制。本发明提出的基于性能评估的热轧过程厚度‑活套‑张力优化控制方法实现了对厚度‑活套‑张力这一复杂控制系统的性能评估,且优化控制过程不再受限于专家经验,大幅提升厚度‑活套‑张力控制系统的稳定性,可以广泛地投入到热轧生产当中。

    基于多通道分布式深度集成预测的冷轧生产前馈控制方法

    公开(公告)号:CN117724433B

    公开(公告)日:2024-04-19

    申请号:CN202410174379.1

    申请日:2024-02-07

    Applicant: 东北大学

    Abstract: 本发明提供一种基于多通道分布式深度集成预测的冷轧生产前馈控制方法,涉及钢铁生产的智能化核心技术领域,采集冷轧过程数据和质量检测设备的K个通道的冷轧产品质量数据,构建原始数据集;对经过预处理后的原始数据集按照预定的比例进行划分,得到训练集,留出集和测试集;使用训练集用来训练基学习器;采用分布式框架为每个通道的冷轧产品质量数据构建多通道分布式深度集成模型;使用多通道分布式深度集成模型对测试集进行预测得到K个通道的冷轧产品质量预测值;基于预测结果制定不同的控制策略;根据控制策略采用猎豹优化算法对多机架控制参数进行前馈修正,实现对冷轧生产的控制。本方法预测速度快,控制精度高,提升了冷轧生产的控制精度。

    热轧用高次曲线融合正弦函数的支撑辊辊形设计方法

    公开(公告)号:CN117574582B

    公开(公告)日:2024-04-19

    申请号:CN202410056777.3

    申请日:2024-01-16

    Applicant: 东北大学

    Abstract: 本发明保护一种热轧用高次曲线融合正弦函数的支撑辊辊形及其设计方法。支撑辊在与变凸度工作辊配合工作当中,由于工作辊特殊的S型曲线,容易使得支撑辊产生严重的不均匀磨损,导致支撑辊使用寿命减少,且在服役周期内产生的辊形变化对板形产生影响。为了减小此影响,本发明方法综合考虑到工作辊的曲线特征、支撑辊对板形的调节能力和支撑辊的不均匀磨损,提出一种热轧用高次曲线融合正弦函数的支撑辊辊形设计方法。该方法改善了支撑辊与变凸度工作辊间接触压力分布不均匀的情况,本发明的支撑辊与变凸度工作辊搭配时,可以减小支撑辊两端的辊间接触应力,改善支撑辊辊边缘应力集中现象,实现轧辊均匀磨损,延长支撑辊的使用寿命。

    一种基于数据驱动的轧制过程轧辊磨损预测方法

    公开(公告)号:CN117875137A

    公开(公告)日:2024-04-12

    申请号:CN202410270793.2

    申请日:2024-03-11

    Applicant: 东北大学

    Abstract: 本发明提供一种基于数据驱动的轧制过程轧辊磨损预测方法,涉及轧钢自动控制技术领域。该方法首先确定影响轧辊磨损的主要特征参数;并建立四辊轧机轧辊‑轧件热力耦合有限元模型,获取轧制过程不同工况下的接触应力分布;再按照轧制过程中窜辊位置,沿轧辊宽度方向将轧辊辊面划分成一系列离散的磨损单元;并根据实际轧制过程,获取轧制过程工艺参数、接触应力、接触宽度、磨损长度、轧制现场轧辊磨损量实测值以及轧辊磨损计算值;最后建立数据机理融合的轧辊磨损值预测模型,进行轧辊磨损值预测。该方法在提高计算速度的同时,提高预测模型的计算精度,从而实现轧制过程中轧辊磨损的准确预测。

    基于三维模型的六辊冷轧机临界振动速度预测方法

    公开(公告)号:CN114091308B

    公开(公告)日:2024-04-09

    申请号:CN202111392303.9

    申请日:2021-11-19

    Applicant: 东北大学

    Abstract: 本发明提供基于三维模型的六辊冷轧机临界振动速度预测方法,属于轧制过程自动化技术领域,基于三维的六辊冷轧机模型预测临界振动速度,考虑到轧辊应视为短粗梁且需考虑剪切变形的影响,选择Timoshenko梁,同时对节点位移矢量采用Hermite插值;通过对轧件、轧辊和牌坊间的受力分析,可以建立轧机‑轧件系统的垂向振动动力学方程,采用Newmark‑Beta法进行求解,可得到特定速度下的轧辊位移响应曲线,若位移响应曲线的幅值恒定,则该速度为轧机的临界振动速度;本发明不仅可以研究二维轧制工艺参数对轧制过程稳定性的影响,还可以分析弯蹿辊等宽向参数对临界轧制速度的影响,在轧制规程制定阶段就预测出轧机的临界振动速度,可以为工艺参数优化提供理论支撑。

    一种热轧薄带线卷取机前双侧导板的控制方法

    公开(公告)号:CN117225906A

    公开(公告)日:2023-12-15

    申请号:CN202311332224.8

    申请日:2023-10-16

    Applicant: 东北大学

    Abstract: 本发明的一种热轧薄带线卷取机前双侧导板的控制方法,在热轧薄带线卷取机前依次设置第一导板、第一夹送辊、飞剪、第二夹送辊、第二导板和第三夹送辊;第一导板前设置第一热金属检测器,第一导板和第一夹送辊之间设置第二热金属检测器,第二夹送辊和第二导板之间设置第三热金属检测器,第二导板和第三夹送辊之间设置第四热金属检测器;本发明控制方法能通过第一导板提前将带头顺利对中,从而使飞剪顺利剪切,又能通过双导板的控制减少带钢的塔形、折边、跑偏等问题的产生,在实际生产中,提升了下线钢卷卷形质量,同时也提高了带钢成品的成材率。

Patent Agency Ranking