-
公开(公告)号:CN111863007A
公开(公告)日:2020-10-30
申请号:CN202010554629.6
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G10L21/0208 , G10L21/0272 , G06N3/04
Abstract: 本发明公开了一种基于深度学习的语音增强方法及系统,该方法包括如下步骤:步骤SS1:获得带噪语音的多个IRM预测值的解的集合;步骤SS2:将来自所述Boosting-DNN语音增强模型输出的IRM的解的集合拼接带噪特征作为输入,预测最终的IRM预测值集合 本发明通过将Boosting-DNN语音增强模型和Ensemble-DNN集成语音增强模型这两个DNN串接起来的方式,有效的解决了一个神经网络由于层次太深训练不稳定的现象,构建一种非常深的网络结构,彻底解决前端语音增强技术就可以确保把语音从带噪信号中分离出来,以便后端识别模型能正确识别语音的内容。
-
公开(公告)号:CN111785253A
公开(公告)日:2020-10-16
申请号:CN202010554156.X
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
Abstract: 本发明公开了一种分布不均衡的语种识别方法及系统,该方法包括如下步骤:步骤SS1:训练步骤,具体包括:对各语种的语音数据进行BN特征提取,生成的特征参数输入语种识别系统生成语种识别模型;步骤SS2:识别步骤,具体包括:加载步骤SS1获得的语种识别模型,对待识别的语音做判别,输出识别结果。通过本发明,使语种识别可以在分布不均衡的数据环境下同样产生有效作用,解决现有通用技术下的语种识别问题。
-
公开(公告)号:CN110942783A
公开(公告)日:2020-03-31
申请号:CN201910978660.X
申请日:2019-10-15
Applicant: 国家计算机网络与信息安全管理中心 , 珠海高凌信息科技股份有限公司
Abstract: 本发明涉及一种基于音频多级聚类的群呼型骚扰电话分类方法,该方法包括:S100,将包括有多个音频数据的音频池划分为多个等同分组,将每个分组依次进行特征提取及特征对比,进而执行聚类分析,得到音频聚类;S200,将音频进行语音转写,将语音转写的文本进行关键词库检索对比,得到关键词对比结果;S300,将音频聚类执行音频库检索对比,得到音频聚类结果;S400,对所述关键词对比结果及音频聚类结果进行合并分析,得到自动分类的群呼型骚扰电话。本发明的有益效果为:能够有效检测和发现群呼型骚扰电话;结合关键词、文本转写等手段,对骚扰电话实现了自动分类,节省了人工成本,提高了效率。
-
公开(公告)号:CN110691140A
公开(公告)日:2020-01-14
申请号:CN201910991135.1
申请日:2019-10-18
Applicant: 国家计算机网络与信息安全管理中心 , 长安通信科技有限责任公司 , 杭州东信北邮信息技术有限公司
Abstract: 一种通讯网络中的弹性数据下发方法,包括:前端接入装置定期将所在业务服务器的能力数据上报给后端控制器;后端控制器保存前端接入装置上传的能力数据和上传时间,按照一定间隔时间T,根据前端接入装置所上传的能力数据,计算前端接入装置的黑白灰名单号码量,并生成策略数据,同时保存计算的前端接入装置的黑白灰名单号码量和对应时间,然后将所生成的策略数据下发给前端接入装置;前端接入装置保存后端控制器下发的策略数据,按照策略数据,对所在业务服务器所接收到的呼叫信令进行检测和匹配。本发明属于信息技术领域,能根据业务服务器的实际能力,实时调整被分配的黑白灰名单号码量,从而弹性开启不同的检测能力。
-
公开(公告)号:CN110248322A
公开(公告)日:2019-09-17
申请号:CN201910572375.8
申请日:2019-06-28
Applicant: 国家计算机网络与信息安全管理中心 , 天津市国瑞数码安全系统股份有限公司
Abstract: 本发明涉及一种基于诈骗短信的诈骗团伙识别方法及识别系统,该识别方法包括:实时识别并提取诈骗短信的敏感信息;对该诈骗短信进行通联关系分析,获取预定时间范围内所有相关通讯数据;从所有相关通讯数据中分别提取与敏感信息有关联的主叫信息和被叫信息,并提取与主叫号码相似度超过阈值的主叫信息;根据所有主叫信息获取诈骗团伙的诈骗地区、诈骗时间、团伙成员、团伙剧本。本发明提取诈骗短信的敏感信息,并获取与诈骗短信同一主叫的有关语音信息进行分析,从而获取以多种方式向被叫信息发送敏感信息的所有主叫信息和主叫语音,对所有主叫信息进行整体分析,以获取诈骗团伙的诈骗地区、诈骗时间、团伙成员等,实现诈骗团伙识别的自动化。
-
公开(公告)号:CN109492026A
公开(公告)日:2019-03-19
申请号:CN201811301410.4
申请日:2018-11-02
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/2458 , G06Q50/30
Abstract: 本发明公开了一种基于改进的主动学习技术的电信欺诈分类检测方法,涉及一种基于改进的主动学习技术的电信欺诈分类检测方法。抽取数量为X的数据划分训练集和测试集。从训练集中抽取样本作为初始训练集,其余为未标记样本。若当前训练集中正类与负类样本数量的比值不小于阈值e,训练有监督分类器f并构造强组合分类器F;将未标记样本逐个放入有监督分类器f中进行类别评分,得到类别评分结果,输入主动学习采样算法,得到信息量大小的评分。选取信息量最大的前D个进行标注,并加入训练集中;当前训练集样本数量大于等于X1,或者迭代次数大于等于C时结束,输出训练好的分类器f。本发明具有较强的稳定性和鲁棒性,实现较高的分类和检测效率。
-
公开(公告)号:CN109243492A
公开(公告)日:2019-01-18
申请号:CN201811263371.3
申请日:2018-10-28
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
Abstract: 本发明公开一种语音情感识别系统,包括语音预处理模块、情感特征提取模块、情感分析模块,所述语音预处理模块的输入端接语音数据,所述语音预处理模块的输出端与所述情感特征提取模块的输入端相联接,所述情感特征提取模块的输出端与所述情感分析模块的输入端相联接,所述情感分析模块的输出端输出分析识别结果;所述语音预处理模块通过对语音数据进行处理获得语音信号,并传递到所述情感特征提取模块对所述语音信号中与情感关联紧密的声学参数进行提取,最后送入所述情感分析模块完成情感的判断。本发明还提出一种语音情感识别方法,增加了电话诈骗系统的检出手段,对于语音数据可进行多维度分析,系统的检出准确率提高了5%。
-
公开(公告)号:CN107566664A
公开(公告)日:2018-01-09
申请号:CN201710727449.1
申请日:2017-08-23
Applicant: 国家计算机网络与信息安全管理中心 , 南京中新赛克科技有限责任公司
Abstract: 本发明公开了一种移动网呼叫中获取真实被叫号码的方法,提出了“C/D口并接、Nc口串接”的解决方案,引入了MAP协议分析处理机制,解析MSRN/TLDN号码申请流程,动态获取MSISDN/MDN号码与MSRN/TLDN号码的映射关系,供呼叫处理使用。本发明的有益效果为:本发明采用C/D口流量并接与Nc口流量串接相结合的处理方式,实现了MSRN/TLDN号码与MSISDN/MDN映射实时动态获取,从功能上,在Nc口信令解析时,能够根据真实被叫号码MSISDN/MDN进行处理,具有明显的可操作性和现实意义;从波及影响上,由于C/D口流量是并接方式,对C/D口业务没有任何影响,把对现网的影响降到最低。
-
公开(公告)号:CN105187403A
公开(公告)日:2015-12-23
申请号:CN201510498610.3
申请日:2015-08-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L29/06
CPC classification number: H04L63/1408 , H04L63/1433
Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。
-
公开(公告)号:CN119249308A
公开(公告)日:2025-01-03
申请号:CN202411100861.7
申请日:2024-08-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/2433 , G06F18/10 , G06F18/214 , G06Q10/047 , G06N3/0895 , G06N3/09 , G01C21/20
Abstract: 本发明设计了一种基于多维度历史行为轨迹数据的用户位置预测方法,涉及时空数据挖掘技术领域。本方法该方法首先从用户使用基于位置的APP历史行为日志中读取用户的位置信息、网络行为信息和社交关系信息,针对其数据特点对其预处理并获得数据集;设计了轨迹剪切、轨迹遮蔽、停留点简化、停留点位置偏移、行为变换、行为遮盖这6种数据增强方法,之后通过一种自监督对比学习训练模型完成训练,从而更全面的提取用户行为特征,从在此基础上实现用户位置预测。本发明方法充分利用了位置信息、网络行为信息和社交关系信息多种维度特征,提升了模型的预测精度。
-
-
-
-
-
-
-
-
-